A Multimodal Supervised Machine Learning Approach for Satellite-based
Wildfire Identification in Europe
- URL: http://arxiv.org/abs/2308.02508v1
- Date: Thu, 27 Jul 2023 08:28:57 GMT
- Title: A Multimodal Supervised Machine Learning Approach for Satellite-based
Wildfire Identification in Europe
- Authors: Angelica Urbanelli, Luca Barco, Edoardo Arnaudo, Claudio Rossi
- Abstract summary: We propose a wildfire identification solution to improve the accuracy of automated satellite-based hotspot detection systems.
We cross-reference the thermal anomalies detected by the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) hotspot services.
Then, we propose a novel supervised machine learning approach to disambiguate hotspot detections, distinguishing between wildfires and other events.
- Score: 0.34410212782758043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing frequency of catastrophic natural events, such as wildfires,
calls for the development of rapid and automated wildfire detection systems. In
this paper, we propose a wildfire identification solution to improve the
accuracy of automated satellite-based hotspot detection systems by leveraging
multiple information sources. We cross-reference the thermal anomalies detected
by the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Visible
Infrared Imaging Radiometer Suite (VIIRS) hotspot services with the European
Forest Fire Information System (EFFIS) database to construct a large-scale
hotspot dataset for wildfire-related studies in Europe. Then, we propose a
novel multimodal supervised machine learning approach to disambiguate hotspot
detections, distinguishing between wildfires and other events. Our methodology
includes the use of multimodal data sources, such as the ERSI annual Land Use
Land Cover (LULC) and the Copernicus Sentinel-3 data. Experimental results
demonstrate the effectiveness of our approach in the task of wildfire
identification.
Related papers
- Rapid Wildfire Hotspot Detection Using Self-Supervised Learning on Temporal Remote Sensing Data [0.12289361708127873]
Leveraging remote sensed data from satellite networks and advanced AI models to automatically detect hotspots is an effective way to build wildfire monitoring systems.
We propose a novel dataset containing time series of remotely sensed data related to European fire events and a Self-Supervised Learning (SSL)-based model able to analyse multi-temporal data and identify hotspots in potentially near real time.
We train and evaluate the performance of our model using our dataset and Thraws, a dataset of thermal anomalies including several fire events, obtaining an F1 score of 63.58.
arXiv Detail & Related papers (2024-05-30T14:31:46Z) - Sen2Fire: A Challenging Benchmark Dataset for Wildfire Detection using Sentinel Data [5.299803738642663]
This dataset is curated from Sentinel-2 multi-spectral data and Sentinel-5P aerosol product.
Each patch has a size of 512$times$512 pixels with 13 bands.
The results suggest that, in contrast to using all bands for wildfire detection, selecting specific band combinations yields superior performance.
arXiv Detail & Related papers (2024-03-26T17:16:04Z) - FLOGA: A machine learning ready dataset, a benchmark and a novel deep
learning model for burnt area mapping with Sentinel-2 [41.28284355136163]
Wildfires pose significant threats to human and animal lives, ecosystems, and socio-economic stability.
In this work, we create and introduce a machine-learning ready dataset we name FLOGA (Forest wiLdfire Observations for the Greek Area)
This dataset is unique as it comprises of satellite imagery acquired before and after a wildfire event.
We use FLOGA to provide a thorough comparison of multiple Machine Learning and Deep Learning algorithms for the automatic extraction of burnt areas.
arXiv Detail & Related papers (2023-11-06T18:42:05Z) - Multimodal Wildland Fire Smoke Detection [5.15911752972989]
Research has shown that climate change creates warmer temperatures and drier conditions, leading to longer wildfire seasons and increased wildfire risks in the U.S.
We present our work on integrating multiple data sources in SmokeyNet, a deep learning model usingtemporal information to detect smoke from wildland fires.
With a time-to-detection of only a few minutes, SmokeyNet can serve as an automated early notification system, providing a useful tool in the fight against destructive wildfires.
arXiv Detail & Related papers (2022-12-29T01:16:06Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Unsupervised Wildfire Change Detection based on Contrastive Learning [1.53934570513443]
The accurate characterization of the severity of the wildfire event contributes to the characterization of the fuel conditions in fire-prone areas.
The aim of this study is to develop an autonomous system built on top of high-resolution multispectral satellite imagery, with an advanced deep learning method for detecting burned area change.
arXiv Detail & Related papers (2022-11-26T20:13:14Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - From One to Many: A Deep Learning Coincident Gravitational-Wave Search [58.720142291102135]
We construct a two-detector search for gravitational waves from binary black hole mergers using neural networks trained on non-spinning binary black hole data from a single detector.
We find that none of these simple two-detector networks are capable of improving the sensitivity over applying networks individually to the data from the detectors.
arXiv Detail & Related papers (2021-08-24T13:25:02Z) - City-scale Scene Change Detection using Point Clouds [71.73273007900717]
We propose a method for detecting structural changes in a city using images captured from mounted cameras over two different times.
A direct comparison of the two point clouds for change detection is not ideal due to inaccurate geo-location information.
To circumvent this problem, we propose a deep learning-based non-rigid registration on the point clouds.
Experiments show that our method is able to detect scene changes effectively, even in the presence of viewpoint and illumination differences.
arXiv Detail & Related papers (2021-03-26T08:04:13Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.