Rapid Wildfire Hotspot Detection Using Self-Supervised Learning on Temporal Remote Sensing Data
- URL: http://arxiv.org/abs/2405.20093v1
- Date: Thu, 30 May 2024 14:31:46 GMT
- Title: Rapid Wildfire Hotspot Detection Using Self-Supervised Learning on Temporal Remote Sensing Data
- Authors: Luca Barco, Angelica Urbanelli, Claudio Rossi,
- Abstract summary: Leveraging remote sensed data from satellite networks and advanced AI models to automatically detect hotspots is an effective way to build wildfire monitoring systems.
We propose a novel dataset containing time series of remotely sensed data related to European fire events and a Self-Supervised Learning (SSL)-based model able to analyse multi-temporal data and identify hotspots in potentially near real time.
We train and evaluate the performance of our model using our dataset and Thraws, a dataset of thermal anomalies including several fire events, obtaining an F1 score of 63.58.
- Score: 0.12289361708127873
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid detection and well-timed intervention are essential to mitigate the impacts of wildfires. Leveraging remote sensed data from satellite networks and advanced AI models to automatically detect hotspots (i.e., thermal anomalies caused by active fires) is an effective way to build wildfire monitoring systems. In this work, we propose a novel dataset containing time series of remotely sensed data related to European fire events and a Self-Supervised Learning (SSL)-based model able to analyse multi-temporal data and identify hotspots in potentially near real time. We train and evaluate the performance of our model using our dataset and Thraws, a dataset of thermal anomalies including several fire events, obtaining an F1 score of 63.58.
Related papers
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - WIT-UAS: A Wildland-fire Infrared Thermal Dataset to Detect Crew Assets
From Aerial Views [0.8741284539870512]
We present the Wildland-fire Infrared Thermal (WIT-UAS) dataset for long-wave infrared sensing of crew and vehicle assets amidst prescribed wildland fire environments.
WIT-UAS-ROS consists of full ROS bag files containing sensor and robot data of UAS flight over the fire, and WIT-UAS-Image contains hand-labeled long-wave infrared (LWIR) images extracted from WIT-UAS-ROS.
Our dataset is the first to focus on asset detection in a wildland fire environment.
arXiv Detail & Related papers (2023-12-14T17:29:26Z) - A Multimodal Supervised Machine Learning Approach for Satellite-based
Wildfire Identification in Europe [0.34410212782758043]
We propose a wildfire identification solution to improve the accuracy of automated satellite-based hotspot detection systems.
We cross-reference the thermal anomalies detected by the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) hotspot services.
Then, we propose a novel supervised machine learning approach to disambiguate hotspot detections, distinguishing between wildfires and other events.
arXiv Detail & Related papers (2023-07-27T08:28:57Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - Multi-time Predictions of Wildfire Grid Map using Remote Sensing Local
Data [0.0]
This paper proposes a distributed learning framework that shares local data collected in ten locations in the western USA throughout local agents.
The proposed model has distinct features that address the characteristic need in prediction evaluations, including dynamic online estimation and time-series modeling.
arXiv Detail & Related papers (2022-09-15T22:34:06Z) - Next Day Wildfire Spread: A Machine Learning Data Set to Predict
Wildfire Spreading from Remote-Sensing Data [5.814925201882753]
Next Day Wildfire Spread' is a curated data set of historical wildfires aggregating nearly a decade of remote-sensing data across the United States.
We implement a convolutional autoencoder that takes advantage of the spatial information of this data to predict wildfire spread.
This data set can be used as a benchmark for developing wildfire propagation models based on remote sensing data for a lead time of one day.
arXiv Detail & Related papers (2021-12-04T23:28:44Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - Object Detection in Thermal Spectrum for Advanced Driver-Assistance
Systems (ADAS) [0.5156484100374058]
Object detection in thermal infrared spectrum provides more reliable data source in low-lighting conditions and different weather conditions.
This paper is about exploring and adapting state-of-the-art object and vision framework on thermal vision with seven distinct classes for advanced driver-assistance systems (ADAS)
The trained network variants on public datasets are validated on test data with three different test approaches.
The efficacy of trained networks is tested on locally gathered novel test-data captured with an uncooled LWIR prototype thermal camera.
arXiv Detail & Related papers (2021-09-20T21:38:55Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.