TS-SatFire: A Multi-Task Satellite Image Time-Series Dataset for Wildfire Detection and Prediction
- URL: http://arxiv.org/abs/2412.11555v1
- Date: Mon, 16 Dec 2024 08:40:12 GMT
- Title: TS-SatFire: A Multi-Task Satellite Image Time-Series Dataset for Wildfire Detection and Prediction
- Authors: Yu Zhao, Sebastian Gerard, Yifang Ban,
- Abstract summary: Covering wildfire events in the contiguous U.S. from January 2017 to October 2021, the dataset includes 3552 surface reflectance images and auxiliary data, totalling 71 GB.
The dataset supports three tasks: active fire detection, daily burned area mapping, and wildfire progression prediction.
This dataset and its benchmarks provide a foundation for advancing wildfire research using deep learning.
- Score: 2.2673203312389423
- License:
- Abstract: Wildfire monitoring and prediction are essential for understanding wildfire behaviour. With extensive Earth observation data, these tasks can be integrated and enhanced through multi-task deep learning models. We present a comprehensive multi-temporal remote sensing dataset for active fire detection, daily wildfire monitoring, and next-day wildfire prediction. Covering wildfire events in the contiguous U.S. from January 2017 to October 2021, the dataset includes 3552 surface reflectance images and auxiliary data such as weather, topography, land cover, and fuel information, totalling 71 GB. The lifecycle of each wildfire is documented, with labels for active fires (AF) and burned areas (BA), supported by manual quality assurance of AF and BA test labels. The dataset supports three tasks: a) active fire detection, b) daily burned area mapping, and c) wildfire progression prediction. Detection tasks use pixel-wise classification of multi-spectral, multi-temporal images, while prediction tasks integrate satellite and auxiliary data to model fire dynamics. This dataset and its benchmarks provide a foundation for advancing wildfire research using deep learning.
Related papers
- EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
This paper presents a dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks.
The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic.
Accompanying the dataset is EarthMAE, a tailored Masked Autoencoder developed to tackle the distinct challenges of remote sensing data.
arXiv Detail & Related papers (2025-01-14T13:42:22Z) - Rapid Wildfire Hotspot Detection Using Self-Supervised Learning on Temporal Remote Sensing Data [0.12289361708127873]
Leveraging remote sensed data from satellite networks and advanced AI models to automatically detect hotspots is an effective way to build wildfire monitoring systems.
We propose a novel dataset containing time series of remotely sensed data related to European fire events and a Self-Supervised Learning (SSL)-based model able to analyse multi-temporal data and identify hotspots in potentially near real time.
We train and evaluate the performance of our model using our dataset and Thraws, a dataset of thermal anomalies including several fire events, obtaining an F1 score of 63.58.
arXiv Detail & Related papers (2024-05-30T14:31:46Z) - Semi-Supervised Domain Adaptation for Wildfire Detection [20.86166825570607]
We propose a novel protocol for wildfire detection, leveraging semi-supervised Domain Adaptation for object detection.
Our dataset encompasses 30 times more diverse labeled scenes for the current largest benchmark wildfire dataset, HPWREN.
Our framework significantly outperforms our source-only baseline by a notable margin of 3.8% in mean Average Precision.
arXiv Detail & Related papers (2024-04-02T11:03:13Z) - Sen2Fire: A Challenging Benchmark Dataset for Wildfire Detection using Sentinel Data [5.299803738642663]
This dataset is curated from Sentinel-2 multi-spectral data and Sentinel-5P aerosol product.
Each patch has a size of 512$times$512 pixels with 13 bands.
The results suggest that, in contrast to using all bands for wildfire detection, selecting specific band combinations yields superior performance.
arXiv Detail & Related papers (2024-03-26T17:16:04Z) - Generative Algorithms for Fusion of Physics-Based Wildfire Spread Models
with Satellite Data for Initializing Wildfire Forecasts [0.0]
Recent progress in using satellites to detect fire locations provides the opportunity to use measurements to improve fire spread forecasts.
This work develops a method for inferring the history of a wildfire from satellite measurements.
arXiv Detail & Related papers (2023-09-05T23:24:34Z) - A Large Scale Homography Benchmark [52.55694707744518]
We present a large-scale dataset of Planes in 3D, Pi3D, of roughly 1000 planes observed in 10 000 images from the 1DSfM dataset.
We also present HEB, a large-scale homography estimation benchmark leveraging Pi3D.
arXiv Detail & Related papers (2023-02-20T14:18:09Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2 (AV2) is a collection of three datasets for perception and forecasting research in the self-driving domain.
The Lidar dataset contains 20,000 sequences of unlabeled lidar point clouds and map-aligned pose.
The Motion Forecasting dataset contains 250,000 scenarios mined for interesting and challenging interactions between the autonomous vehicle and other actors in each local scene.
arXiv Detail & Related papers (2023-01-02T00:36:22Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Next Day Wildfire Spread: A Machine Learning Data Set to Predict
Wildfire Spreading from Remote-Sensing Data [5.814925201882753]
Next Day Wildfire Spread' is a curated data set of historical wildfires aggregating nearly a decade of remote-sensing data across the United States.
We implement a convolutional autoencoder that takes advantage of the spatial information of this data to predict wildfire spread.
This data set can be used as a benchmark for developing wildfire propagation models based on remote sensing data for a lead time of one day.
arXiv Detail & Related papers (2021-12-04T23:28:44Z) - Campus3D: A Photogrammetry Point Cloud Benchmark for Hierarchical
Understanding of Outdoor Scene [76.4183572058063]
We present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks.
The dataset has been point-wisely annotated with both hierarchical and instance-based labels.
We formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies.
arXiv Detail & Related papers (2020-08-11T19:10:32Z) - Speak2Label: Using Domain Knowledge for Creating a Large Scale Driver
Gaze Zone Estimation Dataset [55.391532084304494]
Driver Gaze in the Wild dataset contains 586 recordings, captured during different times of the day including evenings.
Driver Gaze in the Wild dataset contains 338 subjects with an age range of 18-63 years.
arXiv Detail & Related papers (2020-04-13T14:47:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.