Large-scale Generative Simulation Artificial Intelligence: the Next
Hotspot in Generative AI
- URL: http://arxiv.org/abs/2308.02561v1
- Date: Thu, 3 Aug 2023 02:04:04 GMT
- Title: Large-scale Generative Simulation Artificial Intelligence: the Next
Hotspot in Generative AI
- Authors: Qi Wang, Yanghe Feng, Jincai Huang, Yiqin Lv, Zheng Xie, Xiaoshan Gao
- Abstract summary: GenAI has impressed us with substantial breakthroughs in natural language processing and computer vision.
LS-GenAI is the next hotspot for GenAI to connect.
- Score: 12.393966743563544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The concept of GenAI has been developed for decades. Until recently, it has
impressed us with substantial breakthroughs in natural language processing and
computer vision, actively engaging in industrial scenarios. Noticing the
practical challenges, e.g., limited learning resources, and overly dependencies
on scientific discovery empiricism, we nominate large-scale generative
simulation artificial intelligence (LS-GenAI) as the next hotspot for GenAI to
connect.
Related papers
- Generative artificial intelligence in dentistry: Current approaches and future challenges [0.0]
generative AI (GenAI) models bridge the usability gap of AI by providing a natural language interface to interact with complex models.
In dental education, the student now has the opportunity to solve a plethora of questions by only prompting a GenAI model.
GenAI can also be used in dental research, where the applications range from new drug discovery to assistance in academic writing.
arXiv Detail & Related papers (2024-07-24T03:33:47Z) - Prompt Smells: An Omen for Undesirable Generative AI Outputs [4.105236597768038]
We propose two new concepts that will aid the research community in addressing limitations associated with the application of GenAI models.
First, we propose a definition for the "desirability" of GenAI outputs and three factors which are observed to influence it.
Second, drawing inspiration from Martin Fowler's code smells, we propose the concept of "prompt smells" and the adverse effects they are observed to have on the desirability of GenAI outputs.
arXiv Detail & Related papers (2024-01-23T10:10:01Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - GenAI Against Humanity: Nefarious Applications of Generative Artificial
Intelligence and Large Language Models [11.323961700172175]
This article serves as a synthesis of rigorous research presented on the risks of GenAI and misuse of LLMs.
We'll uncover the societal implications that ripple through the GenAI revolution we are witnessing.
The lines between the virtual and the real worlds are blurring, and the consequences of potential GenAI's nefarious applications impact us all.
arXiv Detail & Related papers (2023-10-01T17:25:56Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Large Generative AI Models for Telecom: The Next Big Thing? [7.36678071967351]
Large GenAI models are envisioned to open up a new era of autonomous wireless networks.
In this article, we aim to unfold the opportunities that can be reaped from integrating large GenAI models into the Telecom domain.
arXiv Detail & Related papers (2023-06-17T03:45:00Z) - An Overview on Generative AI at Scale with Edge-Cloud Computing [28.98486923400986]
generative artificial intelligence (GenAI) generates new content that resembles what is created by humans.
The rapid development of GenAI systems has created a huge amount of new data on the Internet.
It is attractive to build GenAI systems at scale by leveraging the edge-cloud computing paradigm.
arXiv Detail & Related papers (2023-06-02T06:24:15Z) - Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI
Revolution [102.45290975132406]
Neuroscience has long been an important driver of progress in artificial intelligence (AI)
We propose that to accelerate progress in AI, we must invest in fundamental research in NeuroAI.
arXiv Detail & Related papers (2022-10-15T17:18:37Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.