Q-Pandora Unboxed: Characterizing Noise Resilience of Quantum Error
Correction Codes
- URL: http://arxiv.org/abs/2308.02769v2
- Date: Wed, 18 Oct 2023 16:11:44 GMT
- Title: Q-Pandora Unboxed: Characterizing Noise Resilience of Quantum Error
Correction Codes
- Authors: Avimita Chatterjee, Subrata Das and Swaroop Ghosh
- Abstract summary: Quantum error correction codes (QECCs) are critical for realizing reliable quantum computing by protecting fragile quantum states against noise and errors.
This paper conducts a comprehensive study analyzing two QECCs under different error types and noise models using simulations.
rotated surface codes perform best with higher thresholds attributed to simplicity and lower qubit overhead.
- Score: 2.348041867134616
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum error correction codes (QECCs) are critical for realizing reliable
quantum computing by protecting fragile quantum states against noise and
errors. However, limited research has analyzed the noise resilience of QECCs to
help select optimal codes. This paper conducts a comprehensive study analyzing
two QECCs - rotated and unrotated surface codes - under different error types
and noise models using simulations. Among them, rotated surface codes perform
best with higher thresholds attributed to simplicity and lower qubit overhead.
The noise threshold, or the point at which QECCs become ineffective, surpasses
the error rate found in contemporary quantum processors. When confronting
quantum hardware where a specific error or noise model is dominant, a
discernible hierarchy emerges for surface code implementation in terms of
resource demand. This ordering is consistently observed across unrotated, and
rotated surface codes. Our noise model analysis ranks the code-capacity model
as the most pessimistic and circuit-level model as the most realistic. The
study maps error thresholds, revealing surface code's advantage over modern
quantum processors. It also shows higher code distances and rounds consistently
improve performance. However, excessive distances needlessly increase qubit
overhead. By matching target logical error rates and feasible number of qubits
to optimal surface code parameters, our study demonstrates the necessity of
tailoring these codes to balance reliability and qubit resources. Conclusively,
we underscore the significance of addressing the notable challenges associated
with surface code overheads and qubit improvements.
Related papers
- Performance of Quantum Approximate Optimization with Quantum Error Detection [2.0174252910776556]
Quantum approximate optimization algorithm (QAOA) is a promising candidate for scaling up.
achieving better-than-classical performance with QAOA is believed to require fault tolerance.
We demonstrate a partially fault-tolerant implementation of QAOA using the $[[k+2,k,2]]$ Iceberg'' error detection code.
arXiv Detail & Related papers (2024-09-18T16:24:43Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Accurate optimal quantum error correction thresholds from coherent information [1.351813974961217]
We use the coherent information of the mixed state of noisy QEC codes to accurately estimate the associated optimal QEC thresholds.
Our findings establish the coherent information as a reliable competitive practical tool for the calculation of optimal thresholds of state-of-the-art QEC codes.
arXiv Detail & Related papers (2023-12-11T18:59:58Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Decoding surface codes with deep reinforcement learning and
probabilistic policy reuse [0.5999777817331317]
Current quantum hardware, also known as noisy intermediate-scale quantum computers (NISQ), are still unable to carry out computations faithfully.
Recent developments of machine learning (ML)-based techniques especially the reinforcement learning (RL) methods have been applied to the decoding problem.
We propose a continual reinforcement learning method to address these decoding challenges.
arXiv Detail & Related papers (2022-12-22T17:24:32Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - The XZZX Surface Code [2.887393074590696]
We show that a variant of the surface code -- the XZZX code -- offers remarkable performance for fault-tolerant quantum computation.
The error threshold of this code matches what can be achieved with random codes (hashing) for every single-qubit Pauli noise channel.
We show that it is possible to maintain all of these advantages when we perform fault-tolerant quantum computation.
arXiv Detail & Related papers (2020-09-16T18:00:01Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.