Approximate Dynamical Quantum Error-Correcting Codes
- URL: http://arxiv.org/abs/2502.09177v1
- Date: Thu, 13 Feb 2025 11:06:34 GMT
- Title: Approximate Dynamical Quantum Error-Correcting Codes
- Authors: Nirupam Basak, Andrew Tanggara, Ankith Mohan, Goutam Paul, Kishor Bharti,
- Abstract summary: Quantum error correction plays a critical role in enabling fault-tolerant quantum computing by protecting fragile quantum information from noise.
General-purpose quantum error correction codes are designed to address a wide range of noise types, making them impractical for near-term quantum devices.
Approximate quantum error correction provides an alternative by tailoring codes to specific noise environments, reducing resource demands while maintaining effective error suppression.
- Score: 4.450613959365281
- License:
- Abstract: Quantum error correction plays a critical role in enabling fault-tolerant quantum computing by protecting fragile quantum information from noise. While general-purpose quantum error correction codes are designed to address a wide range of noise types, they often require substantial resources, making them impractical for near-term quantum devices. Approximate quantum error correction provides an alternative by tailoring codes to specific noise environments, reducing resource demands while maintaining effective error suppression. Dynamical codes, including Floquet codes, introduce a dynamic approach to quantum error correction, employing time-dependent operations to stabilize logical qubits. In this work, we combine the flexibility of dynamical codes with the efficiency of approximate quantum error correction to offer a promising avenue for addressing dominant noise in quantum systems. We construct several approximate dynamical codes using the recently developed strategic code framework. As a special case, we recover the approximate static codes widely studied in the existing literature. By analyzing these approximate dynamical codes through semidefinite programming, we establish the uniqueness and robustness of the optimal encoding, decoding, and check measurements. We also develop a temporal Petz recovery map suited to approximate dynamical codes.
Related papers
- Advantage of Quantum Neural Networks as Quantum Information Decoders [1.1842028647407803]
We study the problem of decoding quantum information encoded in the groundspaces of topological stabilizer Hamiltonians.
We first prove that the standard stabilizer-based error correction and decoding schemes work adequately perturbed well in such quantum codes.
We then prove that Quantum Neural Network (QNN) decoders provide an almost quadratic improvement on the readout error.
arXiv Detail & Related papers (2024-01-11T23:56:29Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Adaptive quantum codes: constructions, applications and fault tolerance [0.0]
A perfect quantum code requires atleast five physical qubits to observe a noticeable improvement over the no-QEC scenario.
We propose an adaptive QEC protocol that allows transmission of quantum information from one site to the other over a 1-d spin chain with high fidelity.
arXiv Detail & Related papers (2022-03-07T10:06:16Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Dissipative Encoding of Quantum Information [0.45880283710344055]
We explore the advantages of using Markovian evolution to prepare a quantum code in the desired logical space.
We show that for stabilizer quantum codes on qubits, a finite-time dissipative encoder may always be constructed.
arXiv Detail & Related papers (2021-02-08T21:07:08Z) - Efficient Concatenated Bosonic Code for Additive Gaussian Noise [0.0]
Bosonic codes offer noise resilience for quantum information processing.
We propose using a Gottesman-Kitaev-Preskill code to detect discard error-prone qubits and a quantum parity code to handle residual errors.
Our work may have applications in a wide range of quantum computation and communication scenarios.
arXiv Detail & Related papers (2021-02-02T08:01:30Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z) - Efficiently computing logical noise in quantum error correcting codes [0.0]
We show that measurement errors on readout qubits manifest as a renormalization on the effective logical noise.
We derive general methods for reducing the computational complexity of the exact effective logical noise by many orders of magnitude.
arXiv Detail & Related papers (2020-03-23T19:40:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.