論文の概要: A generative model for surrogates of spatial-temporal wildfire
nowcasting
- arxiv url: http://arxiv.org/abs/2308.02810v1
- Date: Sat, 5 Aug 2023 06:54:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-08 18:39:29.052884
- Title: A generative model for surrogates of spatial-temporal wildfire
nowcasting
- Title(参考訳): 時空間山火事発生時のサロゲート生成モデル
- Authors: Sibo Cheng and Yike Guo and Rossella Arcucci
- Abstract要約: 3次元ベクトル量子変分オートコーダを用いて生成モデルを提案する。
このモデルは、最近カリフォルニア州で起きた大規模な山火事(チムニー火災)のエコリージョンでテストされている。
数値的な結果から, 連続かつ構造的な火災シナリオの生成に成功した。
- 参考スコア(独自算出の注目度): 13.551652250858144
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent increase in wildfires worldwide has led to the need for real-time fire
nowcasting. Physics-driven models, such as cellular automata and computational
fluid dynamics can provide high-fidelity fire spread simulations but they are
computationally expensive and time-consuming. Much effort has been put into
developing machine learning models for fire prediction. However, these models
are often region-specific and require a substantial quantity of simulation data
for training purpose. This results in a significant amount of computational
effort for different ecoregions. In this work, a generative model is proposed
using a three-dimensional Vector-Quantized Variational Autoencoders to generate
spatial-temporal sequences of unseen wildfire burned areas in a given
ecoregion. The model is tested in the ecoregion of a recent massive wildfire
event in California, known as the Chimney fire. Numerical results show that the
model succeed in generating coherent and structured fire scenarios, taking into
account the impact from geophysical variables, such as vegetation and slope.
Generated data are also used to train a surrogate model for predicting wildfire
dissemination, which has been tested on both simulation data and the real
Chimney fire event.
- Abstract(参考訳): 世界中の山火事の増加は、リアルタイムの火の流し込みの必要性を招いた。
セルオートマトンや計算流体力学などの物理モデルは高忠実度火の拡散シミュレーションを提供するが、計算コストは高く、時間がかかる。
火災予報のための機械学習モデルの開発に多くの努力が注がれている。
しかし、これらのモデルはしばしば地域固有のもので、訓練のためにかなりの量のシミュレーションデータを必要とする。
この結果、異なるエコリージョンに対する膨大な計算努力がもたらされる。
本研究では,3次元ベクトル量子化変分オートエンコーダを用いて,あるエコリージョンの山火事発生地域を時空間的に生成する生成モデルを提案する。
このモデルは、最近カリフォルニア州で起きた大規模な山火事(チムニー火災)のエコリージョンでテストされている。
数値計算の結果,植生や斜面などの物理変数の影響を考慮し,コヒーレントかつ構造的な火災シナリオの生成に成功した。
生成されたデータは、シミュレーションデータと実際の煙突火災イベントの両方でテストされたワイルドファイアの拡散を予測するためのサロゲートモデルのトレーニングにも使用される。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Estimating fire Duration using regression methods [0.0]
本稿では、RF(ランダム森林)、KNN、XGBoost回帰モデルおよびCNNなどの画像ベースによる既知の山火事の消火期間を予測する。
入力を別々に処理して最適な結果を得ることにより、システムは高速かつ比較的正確な将来の予測を行うことができる。
論文 参考訳(メタデータ) (2023-08-17T12:11:27Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Recurrent Convolutional Deep Neural Networks for Modeling Time-Resolved
Wildfire Spread Behavior [0.0]
高忠実度モデルはリアルタイムの火災応答に使用するには計算コストがかかりすぎる。
低忠実度モデルは、経験的測定を統合することで、いくつかの物理的精度と一般化性を犠牲にしている。
機械学習技術は、第一原理物理学を学習することで、これらの目的を橋渡しする能力を提供する。
論文 参考訳(メタデータ) (2022-10-28T21:23:03Z) - A Spatio-Temporal Neural Network Forecasting Approach for Emulation of
Firefront Models [11.388800758488314]
モデルエミュレーションのための専用時間ニューラルネットワークベースのフレームワークを提案する。
提案手法は、ニューラルネットワークに基づくアプローチにおいてしばしば困難となる、空間的および時間的細部での予測を近似することができる。
実証実験では、シミュレーションとエミュレートされたファイアフロント間の良好な一致が示され、平均的なジャカードスコアは0.76である。
論文 参考訳(メタデータ) (2022-06-17T03:11:18Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Learning Wildfire Model from Incomplete State Observations [0.0]
我々は、深層ニューラルネットワークを用いて、米国西部の5か所の将来の山火事予測のための動的モデルを作成します。
提案モデルには,動的オンライン推定や時系列モデリングなど,予測評価における特徴的ニーズに対処する特徴がある。
論文 参考訳(メタデータ) (2021-11-28T03:21:46Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - Convolutional LSTM Neural Networks for Modeling Wildland Fire Dynamics [0.0]
森林火災伝播のダイナミクスをモデル化するために,畳み込み長短期記憶リカレントニューラルネットワークの有効性を評価する。
その結果,convlstmsは局所的な火災伝達イベントを捕捉できるだけでなく,火の拡散率など全体の火災動態を把握できることがわかった。
論文 参考訳(メタデータ) (2020-12-11T23:31:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。