Semi-supervised Learning for Segmentation of Bleeding Regions in Video
Capsule Endoscopy
- URL: http://arxiv.org/abs/2308.02869v1
- Date: Sat, 5 Aug 2023 12:46:48 GMT
- Title: Semi-supervised Learning for Segmentation of Bleeding Regions in Video
Capsule Endoscopy
- Authors: Hechen Li, Yanan Wu, Long Bai, An Wang, Tong Chen, Hongliang Ren
- Abstract summary: Video capsule endoscopy (VCE) is a standout for its high efficacy and non-invasive nature in diagnosing various gastrointestinal (GI) conditions.
For the successful diagnosis and treatment of these conditions, accurate recognition of bleeding regions is crucial.
Deep learning-based methods have emerged as powerful tools for the automated analysis of VCE images.
- Score: 22.28501246682272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of modern diagnostic technology, video capsule endoscopy (VCE)
is a standout for its high efficacy and non-invasive nature in diagnosing
various gastrointestinal (GI) conditions, including obscure bleeding.
Importantly, for the successful diagnosis and treatment of these conditions,
accurate recognition of bleeding regions in VCE images is crucial. While deep
learning-based methods have emerged as powerful tools for the automated
analysis of VCE images, they often demand large training datasets with
comprehensive annotations. Acquiring these labeled datasets tends to be
time-consuming, costly, and requires significant domain expertise. To mitigate
this issue, we have embraced a semi-supervised learning (SSL) approach for the
bleeding regions segmentation within VCE. By adopting the `Mean Teacher'
method, we construct a student U-Net equipped with an scSE attention block,
alongside a teacher model of the same architecture. These models' parameters
are alternately updated throughout the training process. We use the
Kvasir-Capsule dataset for our experiments, which encompasses various GI
bleeding conditions. Notably, we develop the segmentation annotations for this
dataset ourselves. The findings from our experiments endorse the efficacy of
the SSL-based segmentation strategy, demonstrating its capacity to reduce
reliance on large volumes of annotations for model training, without
compromising on the accuracy of identification.
Related papers
- Adversarial Vessel-Unveiling Semi-Supervised Segmentation for Retinopathy of Prematurity Diagnosis [9.683492465191241]
We propose a semi supervised segmentation framework designed to advance ROP studies without the need for extensive manual vessel annotation.
Unlike previous methods that rely solely on limited labeled data, our approach integrates uncertainty weighted vessel unveiling module and domain adversarial learning.
We validate our approach on public datasets and an in-house ROP dataset, demonstrating its superior performance across multiple evaluation metrics.
arXiv Detail & Related papers (2024-11-14T02:40:34Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Adaptive Semi-Supervised Segmentation of Brain Vessels with Ambiguous
Labels [63.415444378608214]
Our approach incorporates innovative techniques including progressive semi-supervised learning, adaptative training strategy, and boundary enhancement.
Experimental results on 3DRA datasets demonstrate the superiority of our method in terms of mesh-based segmentation metrics.
arXiv Detail & Related papers (2023-08-07T14:16:52Z) - Class Attention to Regions of Lesion for Imbalanced Medical Image
Recognition [59.28732531600606]
We propose a framework named textbfClass textbfAttention to textbfREgions of the lesion (CARE) to handle data imbalance issues.
The CARE framework needs bounding boxes to represent the lesion regions of rare diseases.
Results show that the CARE variants with automated bounding box generation are comparable to the original CARE framework.
arXiv Detail & Related papers (2023-07-19T15:19:02Z) - Weakly Supervised Intracranial Hemorrhage Segmentation using Head-Wise
Gradient-Infused Self-Attention Maps from a Swin Transformer in Categorical
Learning [0.6269243524465492]
Intracranial hemorrhage (ICH) is a life-threatening medical emergency that requires timely diagnosis and accurate treatment.
Deep learning techniques have emerged as the leading approach for medical image analysis and processing.
We introduce a novel weakly supervised method for ICH segmentation, utilizing a Swin transformer trained on an ICH classification task with categorical labels.
arXiv Detail & Related papers (2023-04-11T00:17:34Z) - Clinically Acceptable Segmentation of Organs at Risk in Cervical Cancer
Radiation Treatment from Clinically Available Annotations [0.0]
We present an approach to learn a deep learning model for the automatic segmentation of Organs at Risk (OARs) in cervical cancer radiation treatment.
We employ simples for automatic data cleaning to minimize data inhomogeneity, label noise, and missing annotations.
We develop a semi-supervised learning approach utilizing a teacher-student setup, annotation imputation, and uncertainty-guided training to learn in presence of missing annotations.
arXiv Detail & Related papers (2023-02-21T13:24:40Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
State-of-the-art in automated segmentation remains supervised learning, employing discriminative models such as U-Net.
Semi-supervised learning (SSL) attempts to leverage the abundance of unlabelled data to obtain more robust and reliable models.
Deep generative models such as the SemanticGAN are truly viable alternatives to tackle challenging medical image segmentation problems.
arXiv Detail & Related papers (2022-11-03T15:19:59Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Federated Semi-Supervised Learning for COVID Region Segmentation in
Chest CT using Multi-National Data from China, Italy, Japan [14.776338073000526]
COVID-19 has led to urgent needs for reliable diagnosis and management of SARS-CoV-2 infection.
Recent efforts have focused on computer-aided characterization and diagnosis.
domain shift of data across clinical data centers poses a serious challenge when deploying learning-based models.
arXiv Detail & Related papers (2020-11-23T21:51:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.