論文の概要: Source-free Domain Adaptive Human Pose Estimation
- arxiv url: http://arxiv.org/abs/2308.03202v3
- Date: Tue, 15 Aug 2023 15:47:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 15:46:54.616549
- Title: Source-free Domain Adaptive Human Pose Estimation
- Title(参考訳): ソースフリードメイン適応型ヒューマンポース推定
- Authors: Qucheng Peng, Ce Zheng, Chen Chen
- Abstract要約: HPE(Human Pose Estimation)は、モーション分析、ヘルスケア、バーチャルリアリティーなど、さまざまな分野で広く使われている。
これを解決する1つのアプローチは、合成データセット上でHPEモデルをトレーニングし、実世界のデータに対してドメイン適応を実行することである。
HPEの既存のDAメソッドは、適応プロセスでソースデータとターゲットデータの両方を使用することで、データのプライバシとセキュリティを無視する。
- 参考スコア(独自算出の注目度): 12.953589379165024
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Human Pose Estimation (HPE) is widely used in various fields, including
motion analysis, healthcare, and virtual reality. However, the great expenses
of labeled real-world datasets present a significant challenge for HPE. To
overcome this, one approach is to train HPE models on synthetic datasets and
then perform domain adaptation (DA) on real-world data. Unfortunately, existing
DA methods for HPE neglect data privacy and security by using both source and
target data in the adaptation process. To this end, we propose a new task,
named source-free domain adaptive HPE, which aims to address the challenges of
cross-domain learning of HPE without access to source data during the
adaptation process. We further propose a novel framework that consists of three
models: source model, intermediate model, and target model, which explores the
task from both source-protect and target-relevant perspectives. The
source-protect module preserves source information more effectively while
resisting noise, and the target-relevant module reduces the sparsity of spatial
representations by building a novel spatial probability space, and
pose-specific contrastive learning and information maximization are proposed on
the basis of this space. Comprehensive experiments on several domain adaptive
HPE benchmarks show that the proposed method outperforms existing approaches by
a considerable margin. The codes are available at
https://github.com/davidpengucf/SFDAHPE.
- Abstract(参考訳): HPE(Human Pose Estimation)は、モーション分析、ヘルスケア、仮想現実など、さまざまな分野で広く使われている。
しかし、ラベル付き実世界のデータセットの膨大な費用は、HPEにとって大きな課題となる。
これを解決する1つのアプローチは、合成データセット上でHPEモデルをトレーニングし、実際のデータ上でドメイン適応(DA)を実行することである。
残念ながら、HPEの既存のDAメソッドは、適応プロセスでソースデータとターゲットデータの両方を使用することで、データのプライバシとセキュリティを無視している。
そこで本研究では,hpeのクロスドメイン学習の課題を解決するために,適応プロセス中にソースデータにアクセスせずに,新たなタスクであるsource-free domain adaptive hpeを提案する。
さらに、ソースモデル、中間モデル、ターゲットモデルという3つのモデルからなる新しいフレームワークを提案し、ソース保護とターゲット関連の観点からタスクを探索する。
音源保護モジュールは、ノイズに抵抗しながらより効果的にソース情報を保存し、ターゲット関連モジュールは、新しい空間確率空間を構築して空間表現のスパーシティを低減し、この空間に基づいてポーズ固有のコントラスト学習と情報最大化を提案する。
いくつかの領域適応型HPEベンチマークの総合的な実験により、提案手法は既存の手法よりもかなり優れていることが示された。
コードはhttps://github.com/davidpengucf/SFDAHPEで入手できる。
関連論文リスト
- Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
ドメイン適応(DA)は、ソースドメインから関連するターゲットドメインへの知識伝達を容易にする。
本稿では、ソースデータフリーなアクティブドメイン適応(SFADA)という実用的なDAパラダイムについて検討する。
本稿では,学習者学習(LFTL)というSFADAの新たなパラダイムを紹介し,学習した学習知識を事前学習モデルから活用し,余分なオーバーヘッドを伴わずにモデルを積極的に反復する。
論文 参考訳(メタデータ) (2024-07-26T17:51:58Z) - Collaborative Multi-source Domain Adaptation Through Optimal Transport [0.0]
マルチソースドメイン適応(MDA)は、複数のラベル付きソースドメインのデータに基づいてトレーニングされたモデルを適用し、ラベルなしのターゲットドメインデータに対して効果的に実行する。
2つの重要なフェーズからなる新しいフレームワークであるCMDA-OT(Collaborative MDA Through Optimal Transport)を紹介する。
論文 参考訳(メタデータ) (2024-04-09T20:06:25Z) - Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation [84.82153655786183]
Informative Data Mining (IDM) と呼ばれる新しいフレームワークを提案し、セマンティックセグメンテーションのための効率的なワンショットドメイン適応を実現する。
IDMは、最も情報性の高いサンプルを特定するために不確実性に基づく選択基準を提供し、迅速に適応し、冗長なトレーニングを減らす。
提案手法は,GTA5/SYNTHIAからCityscapesへの適応タスクにおいて,既存の手法より優れ,56.7%/55.4%の最先端のワンショット性能を実現している。
論文 参考訳(メタデータ) (2023-09-25T15:56:01Z) - Towards Source-free Domain Adaptive Semantic Segmentation via Importance-aware and Prototype-contrast Learning [26.544837987747766]
本稿では、Importance-Aware と Prototype-Contrast Learning を用いた、エンドツーエンドのソースフリードメイン適応セマンティックセマンティックセマンティクス手法を提案する。
提案したIAPCフレームワークは、訓練済みソースモデルからドメイン不変知識を効果的に抽出し、ラベルなしターゲットドメインからドメイン固有知識を学習する。
論文 参考訳(メタデータ) (2023-06-02T15:09:19Z) - RAIN: RegulArization on Input and Network for Black-Box Domain
Adaptation [80.03883315743715]
ソースのないドメイン適応は、ソースデータを公開することなく、ソース訓練されたモデルをターゲットドメインに転送する。
このパラダイムは、ソースモデルに対する敵対的な攻撃のため、データ漏洩のリスクがある。
そこで我々は,入力レベルとネットワークレベルの両方の正規化からブラックボックスドメインを適応させる新しい手法であるRAIN(RegulArization on Input and Network)を提案する。
論文 参考訳(メタデータ) (2022-08-22T18:18:47Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
Source-Free Adaptation Domain (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
論文 参考訳(メタデータ) (2022-03-29T17:50:43Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation(UDA)は、セマンティックセグメンテーションのための畳み込みニューラルネットワークベースのアプローチがピクセルレベルの注釈付きデータに大きく依存するという課題に取り組むことができる。
そこで本稿では,十分に訓練されたソースモデルとラベルなしのターゲットドメインデータセットのみを適用可能な,意味セグメンテーションのためのソースフリーなドメイン適応フレームワークsfdaを提案する。
論文 参考訳(メタデータ) (2021-03-30T14:14:29Z) - Towards Inheritable Models for Open-Set Domain Adaptation [56.930641754944915]
本稿では、将来、ソースデータセットが存在しない場合の適応を容易にするために、ソース学習モデルを用いた実用的なドメイン適応パラダイムを提案する。
本稿では,ソースデータがない場合でも,対象領域に対して最適なソースモデルの選択を可能にするために,継承可能性の定量化を目的とする手法を提案する。
論文 参考訳(メタデータ) (2020-04-09T07:16:30Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptUDA (UDA) は、ラベル付きソースデータセットから学んだ知識を活用して、新しいラベル付きドメインで同様のタスクを解決することを目的としている。
従来のUDAメソッドは、モデルに適応するためには、通常、ソースデータにアクセスする必要がある。
この作業は、訓練済みのソースモデルのみが利用できる実践的な環境に取り組み、ソースデータなしでそのようなモデルを効果的に活用してUDA問題を解決する方法に取り組みます。
論文 参考訳(メタデータ) (2020-02-20T03:13:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。