論文の概要: DOMINO: Domain-invariant Hyperdimensional Classification for
Multi-Sensor Time Series Data
- arxiv url: http://arxiv.org/abs/2308.03295v2
- Date: Fri, 18 Aug 2023 14:40:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 19:12:53.515057
- Title: DOMINO: Domain-invariant Hyperdimensional Classification for
Multi-Sensor Time Series Data
- Title(参考訳): DOMINO:マルチセンサ時系列データのためのドメイン不変超次元分類
- Authors: Junyao Wang, Luke Chen, Mohammad Abdullah Al Faruque
- Abstract要約: ノイズの多いマルチセンサ時系列データにおける分散シフト問題に対処する新しいHDC学習フレームワークであるDOMINOを提案する。
DOMINOは最先端(SOTA)DNNベースのドメイン一般化技術よりも平均2.04%高い精度で達成し、16.34倍高速なトレーニングと2.89倍高速な推論を提供する。
- 参考スコア(独自算出の注目度): 14.434647668734184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid evolution of the Internet of Things, many real-world
applications utilize heterogeneously connected sensors to capture time-series
information. Edge-based machine learning (ML) methodologies are often employed
to analyze locally collected data. However, a fundamental issue across
data-driven ML approaches is distribution shift. It occurs when a model is
deployed on a data distribution different from what it was trained on, and can
substantially degrade model performance. Additionally, increasingly
sophisticated deep neural networks (DNNs) have been proposed to capture spatial
and temporal dependencies in multi-sensor time series data, requiring intensive
computational resources beyond the capacity of today's edge devices. While
brain-inspired hyperdimensional computing (HDC) has been introduced as a
lightweight solution for edge-based learning, existing HDCs are also vulnerable
to the distribution shift challenge. In this paper, we propose DOMINO, a novel
HDC learning framework addressing the distribution shift problem in noisy
multi-sensor time-series data. DOMINO leverages efficient and parallel matrix
operations on high-dimensional space to dynamically identify and filter out
domain-variant dimensions. Our evaluation on a wide range of multi-sensor time
series classification tasks shows that DOMINO achieves on average 2.04% higher
accuracy than state-of-the-art (SOTA) DNN-based domain generalization
techniques, and delivers 16.34x faster training and 2.89x faster inference.
More importantly, DOMINO performs notably better when learning from partially
labeled and highly imbalanced data, providing 10.93x higher robustness against
hardware noises than SOTA DNNs.
- Abstract(参考訳): モノのインターネットの急速な進化とともに、多くの現実世界のアプリケーションは不均一に接続されたセンサーを使って時系列情報を捉えている。
エッジベースの機械学習(ML)手法は、しばしばローカルに収集されたデータを分析するために使用される。
しかし、データ駆動MLアプローチにおける根本的な問題は、分散シフトである。
モデルがトレーニング対象と異なるデータ分散上にデプロイされた場合、モデルのパフォーマンスが著しく低下する可能性がある。
さらに、より高度なディープニューラルネットワーク(DNN)が提案され、マルチセンサー時系列データにおける空間的および時間的依存関係をキャプチャし、今日のエッジデバイスの容量を超える計算資源を必要とする。
脳にインスパイアされた超次元コンピューティング(HDC)はエッジベースの学習のための軽量なソリューションとして導入されているが、既存のHDCも分散シフトの課題に対して脆弱である。
本稿では,ノイズの多いマルチセンサ時系列データにおける分散シフト問題に対処する新しいHDC学習フレームワークであるDOMINOを提案する。
DOMINOは高次元空間上での効率的かつ並列な行列演算を利用して、領域不変次元を動的に識別しフィルタリングする。
幅広いマルチセンサ時系列分類タスクについて評価したところ、DOMINOは最先端(SOTA)のドメイン一般化技術よりも平均2.04%高い精度で達成でき、16.34倍高速トレーニングと2.89倍高速推論を実現している。
さらに重要なことは、DOMINOは部分的にラベル付けされ、高度に不均衡なデータから学習するときに、SOTA DNNよりも10.93倍高い堅牢性を提供する。
関連論文リスト
- SMORE: Similarity-based Hyperdimensional Domain Adaptation for
Multi-Sensor Time Series Classification [17.052624039805856]
マルチセンサ時系列分類のための新しい資源効率ドメイン適応(DA)アルゴリズムであるSMOREを提案する。
SMOREは、最先端(SOTA)のDNNベースのDAアルゴリズムよりも平均1.98%高い精度で18.81倍高速トレーニングと4.63倍高速推論を実現している。
論文 参考訳(メタデータ) (2024-02-20T18:48:49Z) - Sparse-DySta: Sparsity-Aware Dynamic and Static Scheduling for Sparse
Multi-DNN Workloads [65.47816359465155]
複数のディープニューラルネットワーク(DNN)を並列に実行することは、両エッジデバイスで新たなワークロードとなっている。
スパースマルチDNNスケジューリングに静的なスケジューラパターンと動的スケジューラ情報の両方を利用する新しいスケジューラDystaを提案する。
提案手法は, 遅延制約違反率を最大10%削減し, 平均正規化ターンアラウンド時間で約4倍に向上する。
論文 参考訳(メタデータ) (2023-10-17T09:25:17Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
ほとんどの機械学習(ML)システムは、トレーニングとデプロイメントの間、定常的で一致したデータ分散を前提としている。
データ分布は、環境要因、センサー特性、タスク・オブ・関心などの変化により、時間とともに変化することが多い。
本稿では,ドメインシフト下での効率的な連続学習のためのアダプタ・リコンフィグレータ(EAR)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T23:55:17Z) - Dynamic Network-Assisted D2D-Aided Coded Distributed Learning [59.29409589861241]
本稿では,デバイス間のロードバランシングのための新しいデバイス・ツー・デバイス(D2D)支援型符号化学習手法(D2D-CFL)を提案する。
最小処理時間を達成するための最適圧縮率を導出し、収束時間との接続を確立する。
提案手法は,ユーザが継続的にトレーニングデータを生成するリアルタイム協調アプリケーションに有用である。
論文 参考訳(メタデータ) (2021-11-26T18:44:59Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
LiDARデータ上でディープニューラルネットワーク(DNN)をトレーニングするには、大規模なポイントワイドアノテーションが必要である。
シミュレーション・トゥ・リアル・ドメイン適応(SRDA)は、DNNを無制限の合成データと自動生成されたラベルで訓練する。
ePointDAは、自己教師付きドロップアウトノイズレンダリング、統計不変および空間適応型特徴アライメント、転送可能なセグメンテーション学習の3つのモジュールで構成されている。
論文 参考訳(メタデータ) (2020-09-07T23:46:08Z) - SRDCNN: Strongly Regularized Deep Convolution Neural Network
Architecture for Time-series Sensor Signal Classification Tasks [4.950427992960756]
SRDCNN: 時系列分類タスクを実行するために, SRDCNN(Strongly Regularized Deep Convolution Neural Network)をベースとしたディープアーキテクチャを提案する。
提案手法の新規性は、ネットワークウェイトが L1 と L2 のノルム法則によって正則化されることである。
論文 参考訳(メタデータ) (2020-07-14T08:42:39Z) - Deep Siamese Domain Adaptation Convolutional Neural Network for
Cross-domain Change Detection in Multispectral Images [28.683734356006262]
クロスドメイン変化検出のための新しいディープ・サイムズ・ドメイン適応畳み込みニューラルネットワーク(DSDANet)アーキテクチャを提案する。
我々の知る限りでは、このようなドメイン適応に基づくディープネットワークが変更検出のために提案されたのは初めてである。
論文 参考訳(メタデータ) (2020-04-13T02:15:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。