論文の概要: ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation
- arxiv url: http://arxiv.org/abs/2009.03456v2
- Date: Tue, 23 Feb 2021 16:52:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 02:11:19.346932
- Title: ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation
- Title(参考訳): epointda:lidarポイントクラウドセグメンテーションのためのエンド・ツー・エンドシミュレーション・トゥ・リアルドメイン適応フレームワーク
- Authors: Sicheng Zhao, Yezhen Wang, Bo Li, Bichen Wu, Yang Gao, Pengfei Xu,
Trevor Darrell, Kurt Keutzer
- Abstract要約: LiDARデータ上でディープニューラルネットワーク(DNN)をトレーニングするには、大規模なポイントワイドアノテーションが必要である。
シミュレーション・トゥ・リアル・ドメイン適応(SRDA)は、DNNを無制限の合成データと自動生成されたラベルで訓練する。
ePointDAは、自己教師付きドロップアウトノイズレンダリング、統計不変および空間適応型特徴アライメント、転送可能なセグメンテーション学習の3つのモジュールで構成されている。
- 参考スコア(独自算出の注目度): 111.56730703473411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to its robust and precise distance measurements, LiDAR plays an important
role in scene understanding for autonomous driving. Training deep neural
networks (DNNs) on LiDAR data requires large-scale point-wise annotations,
which are time-consuming and expensive to obtain. Instead, simulation-to-real
domain adaptation (SRDA) trains a DNN using unlimited synthetic data with
automatically generated labels and transfers the learned model to real
scenarios. Existing SRDA methods for LiDAR point cloud segmentation mainly
employ a multi-stage pipeline and focus on feature-level alignment. They
require prior knowledge of real-world statistics and ignore the pixel-level
dropout noise gap and the spatial feature gap between different domains. In
this paper, we propose a novel end-to-end framework, named ePointDA, to address
the above issues. Specifically, ePointDA consists of three modules:
self-supervised dropout noise rendering, statistics-invariant and
spatially-adaptive feature alignment, and transferable segmentation learning.
The joint optimization enables ePointDA to bridge the domain shift at the
pixel-level by explicitly rendering dropout noise for synthetic LiDAR and at
the feature-level by spatially aligning the features between different domains,
without requiring the real-world statistics. Extensive experiments adapting
from synthetic GTA-LiDAR to real KITTI and SemanticKITTI demonstrate the
superiority of ePointDA for LiDAR point cloud segmentation.
- Abstract(参考訳): その頑丈で正確な距離測定のため、LiDARは自動運転のシーン理解において重要な役割を果たす。
LiDARデータ上でディープニューラルネットワーク(DNN)をトレーニングするには、大規模なポイントワイズアノテーションが必要である。
代わりに、シミュレーション・トゥ・リアル・ドメイン適応(SRDA)は、無制限の合成データを使ってDNNを訓練し、ラベルを自動的に生成し、学習したモデルを実際のシナリオに転送する。
LiDARポイントクラウドセグメンテーションのための既存のSRDAメソッドは主にマルチステージパイプラインを使用し、機能レベルのアライメントに重点を置いている。
それらは実世界の統計に関する事前知識を必要とし、画素レベルのドロップアウトノイズギャップと異なる領域間の空間的特徴ギャップを無視する。
本稿では,上記の問題に対処するため,ePointDAという新しいエンドツーエンドフレームワークを提案する。
具体的には、ePointDAは、自己教師付きドロップアウトノイズレンダリング、統計不変および空間適応的特徴アライメント、転送可能なセグメンテーション学習の3つのモジュールから構成される。
共同最適化により、ePointDAは、実世界の統計を必要とせず、異なる領域間の特徴を空間的に整列することで、合成LiDARのドロップアウトノイズを明示的に描画し、画素レベルでのドメインシフトをブリッジすることができる。
合成GTA-LiDARから実際のKITTIおよびSemanticKITTIへの適応実験は、LiDAR点雲セグメンテーションにおけるePointDAの優位性を実証している。
関連論文リスト
- LiOn-XA: Unsupervised Domain Adaptation via LiDAR-Only Cross-Modal Adversarial Training [61.26381389532653]
LiOn-XAは、LiDAR-Only Cross-Modal (X)学習と3D LiDARポイントクラウドセマンティックセマンティックセグメンテーションのためのAdversarial Trainingを組み合わせた、教師なしドメイン適応(UDA)アプローチである。
3つの現実的適応シナリオに関する実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-10-21T09:50:17Z) - PU-Ray: Domain-Independent Point Cloud Upsampling via Ray Marching on Neural Implicit Surface [5.78575346449322]
我々は任意のレートで新しいレイベースのアップサンプリング手法を提案し、各クエリ線とその対応するパッチに対して深さ予測を行う。
非符号距離関数 (UDF) で定義された神経暗示面上の球面追跡線マーチングアルゴリズムをシミュレーションした。
ルールベースの中間点問合せサンプリング手法は, 最寄りの近傍の復元損失関数を用いて訓練されたエンドツーエンドモデルを必要としない, より均等な分散点を生成する。
論文 参考訳(メタデータ) (2023-10-12T22:45:03Z) - Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation [65.78246406460305]
合成意味混合は、ポイントクラウドセグメンテーションのための最初の教師なし領域適応技術である。
本稿では、ソースドメイン(例えば合成)からの点雲とターゲットドメイン(例えば実世界)からの点雲を同時に処理できる2分岐対称ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-08-28T14:43:36Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
本稿では,3次元物体検出(SSDA3D)のための半改良型領域適応法を提案する。
SSDA3Dはドメイン間適応ステージとドメイン内一般化ステージを含む。
実験の結果,10%のラベル付きターゲットデータしか持たないSSDA3Dは,100%のターゲットラベルを持つ完全教師付きオラクルモデルを上回ることができることがわかった。
論文 参考訳(メタデータ) (2022-12-06T09:32:44Z) - GIPSO: Geometrically Informed Propagation for Online Adaptation in 3D
LiDAR Segmentation [60.07812405063708]
3Dポイントクラウドセマンティックセグメンテーションは、自動運転に基本である。
文学におけるほとんどのアプローチは、動的シーンを扱う際に、ドメインシフトをどのように扱うかという重要な側面を無視している。
本稿では,本研究分野における最先端技術について述べる。
論文 参考訳(メタデータ) (2022-07-20T09:06:07Z) - Sim-to-Real Domain Adaptation for Lane Detection and Classification in
Autonomous Driving [0.0]
教師なしのドメイン適応(UDA)アプローチは低コストで時間を要すると考えられている。
自動走行における車線検出と分類のための逆判別および生成手法を用いたUDAスキームを提案する。
論文 参考訳(メタデータ) (2022-02-15T02:10:14Z) - Unsupervised Domain Adaptation for LiDAR Panoptic Segmentation [5.745037250837124]
このドメインギャップを埋めるためには、教師なしのドメイン適応(UDA)技術が不可欠です。
We propose AdaptLPS, a novel UDA approach for LiDAR panoptic segmentation。
以上の結果から,AdaptLPSはPQスコアにおいて,既存のUDAアプローチよりも最大6.41pp高い性能を示した。
論文 参考訳(メタデータ) (2021-09-30T17:30:43Z) - MNEW: Multi-domain Neighborhood Embedding and Weighting for Sparse Point
Clouds Segmentation [1.2380933178502298]
マルチドメインの近傍埋め込みや,その幾何学的距離,特徴的類似度,周辺空間の疎度に基づく注意重み付けなどを含むMNEWを提案する。
MNEWは、LiDARベースの自動運転認識の適用において重要であるスパースポイントクラウドの最高性能を達成する。
論文 参考訳(メタデータ) (2020-04-05T18:02:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。