MedMine: Examining Pre-trained Language Models on Medication Mining
- URL: http://arxiv.org/abs/2308.03629v2
- Date: Tue, 8 Aug 2023 15:38:21 GMT
- Title: MedMine: Examining Pre-trained Language Models on Medication Mining
- Authors: Haifa Alrdahi, Lifeng Han, Hendrik \v{S}uvalov, Goran Nenadic
- Abstract summary: We examine current state-of-the-art pre-trained language models (PLMs) on such tasks.
We compare their advantages and drawbacks using historical medication mining shared task data sets from n2c2-2018 challenges.
- Score: 7.479160954840647
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automatic medication mining from clinical and biomedical text has become a
popular topic due to its real impact on healthcare applications and the recent
development of powerful language models (LMs). However, fully-automatic
extraction models still face obstacles to be overcome such that they can be
deployed directly into clinical practice for better impacts. Such obstacles
include their imbalanced performances on different entity types and clinical
events. In this work, we examine current state-of-the-art pre-trained language
models (PLMs) on such tasks, via fine-tuning including the monolingual model
Med7 and multilingual large language model (LLM) XLM-RoBERTa. We compare their
advantages and drawbacks using historical medication mining shared task data
sets from n2c2-2018 challenges. We report the findings we get from these
fine-tuning experiments such that they can facilitate future research on
addressing them, for instance, how to combine their outputs, merge such models,
or improve their overall accuracy by ensemble learning and data augmentation.
MedMine is part of the M3 Initiative \url{https://github.com/HECTA-UoM/M3}
Related papers
- Towards Evaluating and Building Versatile Large Language Models for Medicine [57.49547766838095]
We present MedS-Bench, a benchmark designed to evaluate the performance of large language models (LLMs) in clinical contexts.
MedS-Bench spans 11 high-level clinical tasks, including clinical report summarization, treatment recommendations, diagnosis, named entity recognition, and medical concept explanation.
MedS-Ins comprises 58 medically oriented language corpora, totaling 13.5 million samples across 122 tasks.
arXiv Detail & Related papers (2024-08-22T17:01:34Z) - Retrieve, Generate, Evaluate: A Case Study for Medical Paraphrases Generation with Small Language Models [2.4851820343103035]
We introduce pRAGe, a pipeline for Retrieval Augmented Generation and evaluation of medical paraphrases generation using Small Language Models (SLM)
We study the effectiveness of SLMs and the impact of external knowledge base for medical paraphrase generation in French.
arXiv Detail & Related papers (2024-07-23T15:17:11Z) - LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation [0.0]
This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized for medical texts.
Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts.
Our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-16T19:32:23Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Adapting Mental Health Prediction Tasks for Cross-lingual Learning via Meta-Training and In-context Learning with Large Language Model [3.3590922002216193]
We use model-agnostic meta-learning and leveraging large language models (LLMs) to address this gap.
We first apply a meta-learning model with self-supervision, which results in improved model initialisation for rapid adaptation and cross-lingual transfer.
In parallel, we use LLMs' in-context learning capabilities to assess their performance accuracy across the Swahili mental health prediction tasks.
arXiv Detail & Related papers (2024-04-13T17:11:35Z) - MING-MOE: Enhancing Medical Multi-Task Learning in Large Language Models with Sparse Mixture of Low-Rank Adapter Experts [22.596827147978598]
This paper introduces MING-MOE, a novel Mixture-of-Expert(MOE)-based medical large language model.
It is designed to manage diverse and complex medical tasks without requiring task-specific annotations.
It achieves state-of-the-art (SOTA) performance on over 20 medical tasks, illustrating a significant improvement over existing models.
arXiv Detail & Related papers (2024-04-13T15:28:52Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
The scarcity of labelled medical image-report pairs presents great challenges in the development of deep and large-scale neural networks.
We propose customizing off-the-shelf general-purpose large-scale pre-trained models, i.e., foundation models (FMs) in computer vision and natural language processing.
arXiv Detail & Related papers (2023-06-09T03:02:36Z) - PMC-LLaMA: Towards Building Open-source Language Models for Medicine [62.39105735933138]
Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding.
LLMs struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge.
We describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA.
arXiv Detail & Related papers (2023-04-27T18:29:05Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
We propose a Competence-based Multimodal Curriculum Learning framework ( CMCL) to alleviate the data bias and make best use of available data.
Specifically, CMCL simulates the learning process of radiologists and optimize the model in a step by step manner.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that CMCL can be incorporated into existing models to improve their performance.
arXiv Detail & Related papers (2022-06-24T08:16:01Z) - An Empirical Study of Multi-Task Learning on BERT for Biomedical Text
Mining [17.10823632511911]
We study a multi-task learning model with multiple decoders on varieties of biomedical and clinical natural language processing tasks.
Our empirical results demonstrate that the MTL fine-tuned models outperform state-of-the-art transformer models.
arXiv Detail & Related papers (2020-05-06T13:25:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.