論文の概要: Diffusion Model in Causal Inference with Unmeasured Confounders
- arxiv url: http://arxiv.org/abs/2308.03669v2
- Date: Mon, 14 Aug 2023 05:17:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 18:32:44.828627
- Title: Diffusion Model in Causal Inference with Unmeasured Confounders
- Title(参考訳): 非計測共同設立者の因果推論における拡散モデル
- Authors: Tatsuhiro Shimizu
- Abstract要約: 本研究では,未測定の共同設立者の存在下での観察データから因果的疑問に答えるための拡散モデルの拡張方法について検討する。
提案モデルでは,非計測共同設立者の下で,DCMよりも高精度に反事実分布を抽出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study how to extend the use of the diffusion model to answer the causal
question from the observational data under the existence of unmeasured
confounders. In Pearl's framework of using a Directed Acyclic Graph (DAG) to
capture the causal intervention, a Diffusion-based Causal Model (DCM) was
proposed incorporating the diffusion model to answer the causal questions more
accurately, assuming that all of the confounders are observed. However,
unmeasured confounders in practice exist, which hinders DCM from being
applicable. To alleviate this limitation of DCM, we propose an extended model
called Backdoor Criterion based DCM (BDCM), whose idea is rooted in the
Backdoor criterion to find the variables in DAG to be included in the decoding
process of the diffusion model so that we can extend DCM to the case with
unmeasured confounders. Synthetic data experiment demonstrates that our
proposed model captures the counterfactual distribution more precisely than DCM
under the unmeasured confounders.
- Abstract(参考訳): 本研究では,未測定の共同設立者の存在下での観察データから因果的疑問に答えるための拡散モデルの適用方法を検討する。
因果的介入を捉えるためにDAG(Directed Acyclic Graph)を用いるパールの枠組みでは、すべての共同設立者が観察されることを前提に、拡散モデルを用いて因果的疑問により正確に答える手法が提案された。
しかし、実際には測定されていない共同設立者が存在し、DCMの適用を妨げている。
DCMのこの制限を軽減するために,バックドア基準に基づくDCM(Backdoor Criterion based DCM)と呼ばれる拡張モデルを提案する。
合成データ実験により, 提案モデルが, dcmよりも正確に反事実分布を捉えていることが証明された。
関連論文リスト
- Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
CFGの背後にある理論を再検討し、組合せ係数の不適切な構成(すなわち、広く使われている和対1バージョン)が生成分布の期待シフトをもたらすことを厳密に確認する。
本稿では,誘導係数を緩和したReCFGを提案する。
このようにして、修正された係数は観測されたデータをトラバースすることで容易に事前計算でき、サンプリング速度はほとんど影響を受けない。
論文 参考訳(メタデータ) (2024-10-24T13:41:32Z) - Mitigating Embedding Collapse in Diffusion Models for Categorical Data [52.90687881724333]
我々は,学習を安定させる埋め込み空間内の連続拡散フレームワークであるCATDMを紹介する。
ベンチマーク実験により、CATDMは埋没崩壊を緩和し、FFHQ、LSUN教会、LSUNベッドルームにおいて優れた結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-10-18T09:12:33Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Direct Diffusion Bridge using Data Consistency for Inverse Problems [65.04689839117692]
拡散モデルに基づく逆問題解法は優れた性能を示したが、速度は制限されている。
いくつかの最近の研究は、拡散プロセスを構築し、クリーンで破損したものを直接ブリッジすることでこの問題を緩和しようと試みている。
微調整を必要とせずにデータの一貫性を強制する改良された推論手順を提案する。
論文 参考訳(メタデータ) (2023-05-31T12:51:10Z) - Modeling Causal Mechanisms with Diffusion Models for Interventional and Counterfactual Queries [10.818661865303518]
本稿では,観察的,介入的,反ファクト的クエリに因果的に十分な設定で回答する問題を考察する。
本稿では拡散型因果モデル (DCM) を導入し, 独自の潜伏符号化を生成する因果メカニズムを学習する。
我々の実証評価は、因果クエリに応答する既存の最先端手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2023-02-02T04:08:08Z) - Interventions, Where and How? Experimental Design for Causal Models at
Scale [47.63842422086614]
観測データと介入データからの因果発見は、限られたデータと非識別性のために困難である。
本稿では,ベイジアン因果発見の最近の進歩を,ベイジアン最適実験設計フレームワークに取り入れる。
本稿では, 線形および非線形SCMの合成グラフと, シリコン内単一細胞遺伝子制御ネットワークデータセットであるDREAMの性能について述べる。
論文 参考訳(メタデータ) (2022-03-03T20:59:04Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
本稿では,観測画像データから因果構造を推定する作業について考察する。
Diff-SCMは,近年の発電エネルギーモデルの発展を基盤とした構造因果モデルである。
Diff-SCMはMNISTデータに基づくベースラインよりも現実的で最小限のデファクトアルを生成しており、ImageNetデータにも適用可能である。
論文 参考訳(メタデータ) (2022-02-21T12:23:01Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。