Boosting quantum key distribution via the end-to-end loss control
- URL: http://arxiv.org/abs/2308.03733v1
- Date: Mon, 7 Aug 2023 17:32:14 GMT
- Title: Boosting quantum key distribution via the end-to-end loss control
- Authors: A. D. Kodukhov, V. A. Pastushenko, N. S. Kirsanov, D. A. Kronberg, M.
Pflitsch, and V. M. Vinokur
- Abstract summary: We show a remarkable improvement in the quantum key distribution (QKD) performance using end-to-end line tomography.
Our approach is based on the real-time detection of interventions in the transmission channel.
Our findings provide everlastingly secure efficient quantum cryptography deployment.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of quantum technologies, data security increasingly relies on
quantum cryptography and its most notable application, quantum key distribution
(QKD). Yet, current technological limitations, in particular, the
unavailability of quantum repeaters, cause relatively low key distribution
rates in practical QKD implementations. Here, we demonstrate a remarkable
improvement in the QKD performance using end-to-end line tomography for the
wide class of relevant protocols. Our approach is based on the real-time
detection of interventions in the transmission channel, enabling an adaptive
response that modifies the QKD setup and post-processing parameters, leading,
thereby, to a substantial increase in the key distribution rates. Our findings
provide everlastingly secure efficient quantum cryptography deployment
potentially overcoming the repeaterless rate-distance limit.
Related papers
- Optimizing QKD efficiency by addressing chromatic dispersion and time measurement uncertainty [0.0]
We present a Quantum Key Distribution (QKD) protocol that accounts for fundamental practical challenges.
Our analysis provides a comprehensive framework for understanding the impact of these physical phenomena on QKD efficiency.
In particular, by manipulating the chirp parameter of single-photon wave packets, we demonstrate significant improvements in key generation rates and an extended range of secure communication.
arXiv Detail & Related papers (2024-10-14T18:00:02Z) - Increasing Interference Detection in Quantum Cryptography using the Quantum Fourier Transform [0.0]
We present two quantum cryptographic protocols leveraging the quantum Fourier transform (QFT)
The foremost of these protocols is a novel QKD method that leverages this effectiveness of the QFT.
We additionally show how existing quantum encryption methods can be augmented with a QFT-based approach to improve eavesdropping detection.
arXiv Detail & Related papers (2024-04-18T21:04:03Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Optimizing state-discrimination receivers for continuous-variable
quantum key distribution over a wiretap channel [1.3108652488669736]
We address a continuous-variable quantum key distribution protocol employing quaternary phase-shift-keying (QPSK) of coherent states.
We consider a pure-loss quantum wiretap channel, in which a possible eavesdropper is limited to collect the sole channel losses.
arXiv Detail & Related papers (2023-06-20T12:26:06Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Boosting quantum key distribution via the end-to-end physical control [0.0]
Building on the quantum irreversibility, we develop a technique reborning the existing QKDs into protocols that are unrestricted in distance.
The core of our method is the continuous end-to-end physical control of information leaks in the quantum channel.
arXiv Detail & Related papers (2021-09-12T17:47:20Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Recent advances on quantum key distribution overcoming the linear secret
key capacity bound [0.0]
A crucial goal for quantum key distribution (QKD) is to transmit unconditionally secure keys over long distances.
In 2018, the seminal twin-field (TF) QKD protocol was proposed to provide a remarkable solution to overcoming the linear secret key capacity bound.
This article presents an up-to-date survey on recent developments in this area.
arXiv Detail & Related papers (2020-11-26T02:11:53Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.