Gigabit-rate Quantum Key Distribution on Integrated Photonic Chips
- URL: http://arxiv.org/abs/2504.08298v1
- Date: Fri, 11 Apr 2025 06:57:16 GMT
- Title: Gigabit-rate Quantum Key Distribution on Integrated Photonic Chips
- Authors: Si Qi Ng, Florian Kanitschar, Gong Zhang, Chao Wang,
- Abstract summary: Quantum key distribution (QKD) provides information-theoretic security guaranteed by the laws of quantum mechanics.<n>We report an integrated silicon photonics-based QKD system that achieves a secret key rate of 1.213 Gbit per second over a metropolitan distance of 10 km with polarization multiplexing.
- Score: 17.76925769483522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum key distribution (QKD) provides information-theoretic security guaranteed by the laws of quantum mechanics, making it resistant to future computational threats, including quantum computers. While QKD technology shows great promise, its widespread adoption depends heavily on its usability and viability, with key rate performance and cost-effectiveness serving as critical evaluation metrics. In this work, we report an integrated silicon photonics-based QKD system that achieves a secret key rate of 1.213 Gbit per second over a metropolitan distance of 10 km with polarization multiplexing. Our contributions are twofold. First, in the quantum optical layer, we developed an on-chip quantum transmitter and an efficient quantum receiver that operate at 40 Gbaud/s at room temperature. Second, we designed a discrete-modulated continuous variable (DM CV) QKD implementation with efficient information reconciliation based on polar codes, enabling potentially high-throughput real-time data processing. Our results demonstrate a practical QKD solution that combines high performance with cost efficiency. We anticipate this research will pave the way for large-scale quantum secure networks.
Related papers
- Experimental composable key distribution using discrete-modulated continuous variable quantum cryptography [1.9464379888286716]
We present the first experimental demonstration of a four-state DM CVQKD system, successfully generating composable finite-size keys.
This accomplishment is enabled by using an advanced security proof.
Results mark a significant step toward the large-scale deployment of practical, high-performance, cost-effective, and highly secure quantum key distribution networks.
arXiv Detail & Related papers (2024-10-17T16:05:08Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Experimental demonstration of Continuous-Variable Quantum Key
Distribution with a silicon photonics integrated receiver [0.0]
Quantum Key Distribution (QKD) is a prominent application in the field of quantum cryptography.
We present a CV-QKD receiver based on a silicon PIC capable of performing balanced detection.
arXiv Detail & Related papers (2023-11-07T13:27:47Z) - Continuous-Variable Quantum Key Distribution at 10 GBaud using an
Integrated Photonic-Electronic Receiver [0.5417521241272645]
Photonic and electronic integrated circuits that can be produced in large volumes at low cost hold the key to large-scale deployment of next-generation QKD systems.
We present a continuous-variable (CV) QKD system using an integrated photonic-electronic receiver.
The QKD system operates at a classical telecom symbol rate of 10 GBaud, generating high secret key rates exceeding 0.7 Gb/s over a distance of 5 km and 0.3 Gb/s over a distance of 10 km.
arXiv Detail & Related papers (2023-05-31T08:17:09Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Ultrafast quantum key distribution using fully parallelized quantum
channels [0.0]
We report on the realization of a multichannel QKD system for plug-and-play high-bandwidth secure communication at telecom wavelength.
A highly parallelized time-correlated single photon counting unit have been developed and linked to an FPGA-controlled QKD evaluation setup.
arXiv Detail & Related papers (2022-07-15T08:46:45Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Enhancing secure key rates of satellite QKD using a quantum dot
single-photon source [0.5420492913071214]
Global quantum secure communication can be achieved using quantum key distribution (QKD) with orbiting satellites.
Existing techniques use attenuated lasers as weak coherent pulse (WCP) sources, with so-called decoy-state protocols, to generate the required single-photon-level pulses.
We improve on this limitation by using true single-photon pulses generated from a semiconductor quantum dot (QD) embedded in a nanowire.
arXiv Detail & Related papers (2020-09-24T16:55:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.