Weakly Supervised Multi-Task Representation Learning for Human Activity
Analysis Using Wearables
- URL: http://arxiv.org/abs/2308.03805v1
- Date: Sun, 6 Aug 2023 08:20:07 GMT
- Title: Weakly Supervised Multi-Task Representation Learning for Human Activity
Analysis Using Wearables
- Authors: Taoran Sheng and Manfred Huber
- Abstract summary: We propose a weakly supervised multi-output siamese network that learns to map the data into multiple representation spaces.
The representation of the data samples are positioned in the space such that the data with the same semantic meaning in that aspect are closely located to each other.
- Score: 2.398608007786179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sensor data streams from wearable devices and smart environments are widely
studied in areas like human activity recognition (HAR), person identification,
or health monitoring. However, most of the previous works in activity and
sensor stream analysis have been focusing on one aspect of the data, e.g. only
recognizing the type of the activity or only identifying the person who
performed the activity. We instead propose an approach that uses a weakly
supervised multi-output siamese network that learns to map the data into
multiple representation spaces, where each representation space focuses on one
aspect of the data. The representation vectors of the data samples are
positioned in the space such that the data with the same semantic meaning in
that aspect are closely located to each other. Therefore, as demonstrated with
a set of experiments, the trained model can provide metrics for clustering data
based on multiple aspects, allowing it to address multiple tasks simultaneously
and even to outperform single task supervised methods in many situations. In
addition, further experiments are presented that in more detail analyze the
effect of the architecture and of using multiple tasks within this framework,
that investigate the scalability of the model to include additional tasks, and
that demonstrate the ability of the framework to combine data for which only
partial relationship information with respect to the target tasks is available.
Related papers
- Consistency Based Weakly Self-Supervised Learning for Human Activity Recognition with Wearables [1.565361244756411]
We describe a weakly self-supervised approach for recognizing human activities from sensor-based data.
We show that our approach can help the clustering algorithm achieve comparable performance in identifying and categorizing the underlying human activities.
arXiv Detail & Related papers (2024-07-29T06:29:21Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Cross-Domain HAR: Few Shot Transfer Learning for Human Activity
Recognition [0.2944538605197902]
We present an approach for economic use of publicly available labeled HAR datasets for effective transfer learning.
We introduce a novel transfer learning framework, Cross-Domain HAR, which follows the teacher-student self-training paradigm.
We demonstrate the effectiveness of our approach for practically relevant few shot activity recognition scenarios.
arXiv Detail & Related papers (2023-10-22T19:13:25Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - Leveraging sparse and shared feature activations for disentangled
representation learning [112.22699167017471]
We propose to leverage knowledge extracted from a diversified set of supervised tasks to learn a common disentangled representation.
We validate our approach on six real world distribution shift benchmarks, and different data modalities.
arXiv Detail & Related papers (2023-04-17T01:33:24Z) - Semi-supervised Multi-task Learning for Semantics and Depth [88.77716991603252]
Multi-Task Learning (MTL) aims to enhance the model generalization by sharing representations between related tasks for better performance.
We propose the Semi-supervised Multi-Task Learning (MTL) method to leverage the available supervisory signals from different datasets.
We present a domain-aware discriminator structure with various alignment formulations to mitigate the domain discrepancy issue among datasets.
arXiv Detail & Related papers (2021-10-14T07:43:39Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
Multi-Task Learning has emerged as a methodology in which multiple tasks are jointly learned by a shared learning algorithm.
We deal with heterogeneous MTL, simultaneously addressing detection, classification & regression problems.
We build FaceBehaviorNet, the first framework for large-scale face analysis, by jointly learning all facial behavior tasks.
arXiv Detail & Related papers (2021-05-08T22:26:52Z) - The IKEA ASM Dataset: Understanding People Assembling Furniture through
Actions, Objects and Pose [108.21037046507483]
IKEA ASM is a three million frame, multi-view, furniture assembly video dataset that includes depth, atomic actions, object segmentation, and human pose.
We benchmark prominent methods for video action recognition, object segmentation and human pose estimation tasks on this challenging dataset.
The dataset enables the development of holistic methods, which integrate multi-modal and multi-view data to better perform on these tasks.
arXiv Detail & Related papers (2020-07-01T11:34:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.