Revisiting Prompt Engineering via Declarative Crowdsourcing
- URL: http://arxiv.org/abs/2308.03854v1
- Date: Mon, 7 Aug 2023 18:04:12 GMT
- Title: Revisiting Prompt Engineering via Declarative Crowdsourcing
- Authors: Aditya G. Parameswaran, Shreya Shankar, Parth Asawa, Naman Jain, Yujie
Wang
- Abstract summary: Large language models (LLMs) are incredibly powerful at comprehending and generating data in the form of text, but are brittle and error-prone.
We put forth a vision for declarative prompt engineering.
Preliminary case studies on sorting, entity resolution, and imputation demonstrate the promise of our approach.
- Score: 16.624577543520093
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) are incredibly powerful at comprehending and
generating data in the form of text, but are brittle and error-prone. There has
been an advent of toolkits and recipes centered around so-called prompt
engineering-the process of asking an LLM to do something via a series of
prompts. However, for LLM-powered data processing workflows, in particular,
optimizing for quality, while keeping cost bounded, is a tedious, manual
process. We put forth a vision for declarative prompt engineering. We view LLMs
like crowd workers and leverage ideas from the declarative crowdsourcing
literature-including leveraging multiple prompting strategies, ensuring
internal consistency, and exploring hybrid-LLM-non-LLM approaches-to make
prompt engineering a more principled process. Preliminary case studies on
sorting, entity resolution, and imputation demonstrate the promise of our
approach
Related papers
- QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.171011917404485]
Prompting has become a mainstream paradigm for adapting large language models (LLMs) to specific natural language processing tasks.
This approach brings the additional computational burden of model inference and human effort to guide and control the behavior of LLMs.
We present the basic concepts of prompting, review the advances for efficient prompting, and highlight future research directions.
arXiv Detail & Related papers (2024-04-01T12:19:08Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
This study targets a critical aspect of multi-modal LLMs' (LLMs&VLMs) inference: explicit controllable text generation.
We introduce a novel inference method, Prompt Highlighter, which enables users to highlight specific prompt spans to interactively control the focus during generation.
We find that, during inference, guiding the models with highlighted tokens through the attention weights leads to more desired outputs.
arXiv Detail & Related papers (2023-12-07T13:53:29Z) - A Survey on Prompting Techniques in LLMs [0.0]
Autoregressive Large Language Models have transformed the landscape of Natural Language Processing.
We present a taxonomy of existing literature on prompting techniques and provide a concise survey based on this taxonomy.
We identify some open problems in the realm of prompting in autoregressive LLMs which could serve as a direction for future research.
arXiv Detail & Related papers (2023-11-28T17:56:34Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation
with Large Language Models [12.708117108874083]
Large Language Models (LLMs) generate code snippets given natural language intents in zero-shot, i.e., without the need for specific fine-tuning.
Previous research explored In-Context Learning (ICL) as a strategy to guide the LLM generative process with task-specific prompt examples.
In this paper, we deliver a comprehensive study of.
PEFT techniques for LLMs under the automated code generation scenario.
arXiv Detail & Related papers (2023-08-21T04:31:06Z) - Large Language Models can accomplish Business Process Management Tasks [0.0]
We show how Large Language Models (LLMs) can accomplish text-related Business Process Management tasks.
LLMs can accomplish process models from textual descriptions, mining declarative process models from textual descriptions, and assessing the suitability of process tasks from textual descriptions for robotic process automation.
arXiv Detail & Related papers (2023-07-19T11:54:46Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z) - A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT [1.2640882896302839]
This paper provides contributions to research on prompt engineering that apply large language models (LLMs) to automate software development tasks.
It provides a framework for documenting patterns for structuring prompts to solve a range of problems so that they can be adapted to different domains.
Third, it explains how prompts can be built from multiple patterns and illustrates prompt patterns that benefit from combination with other prompt patterns.
arXiv Detail & Related papers (2023-02-21T12:42:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.