論文の概要: Exploiting Spatial-Temporal Context for Interacting Hand Reconstruction
on Monocular RGB Video
- arxiv url: http://arxiv.org/abs/2308.04074v3
- Date: Fri, 5 Jan 2024 02:03:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-08 18:16:05.491756
- Title: Exploiting Spatial-Temporal Context for Interacting Hand Reconstruction
on Monocular RGB Video
- Title(参考訳): 単眼RGBビデオにおける手指再建の空間的文脈の展開
- Authors: Weichao Zhao, Hezhen Hu, Wengang Zhou, Li li, Houqiang Li
- Abstract要約: モノラルなRGBデータからインタラクションハンドを再構築することは、多くの干渉要因が伴うため、難しい作業である。
これまでの作業は、物理的に妥当な関係をモデル化することなく、単一のRGBイメージからの情報のみを活用する。
本研究は, 空間的時間的情報を明示的に活用し, より優れた対話的手指再建を実現することを目的としている。
- 参考スコア(独自算出の注目度): 104.69686024776396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing interacting hands from monocular RGB data is a challenging
task, as it involves many interfering factors, e.g. self- and mutual occlusion
and similar textures. Previous works only leverage information from a single
RGB image without modeling their physically plausible relation, which leads to
inferior reconstruction results. In this work, we are dedicated to explicitly
exploiting spatial-temporal information to achieve better interacting hand
reconstruction. On one hand, we leverage temporal context to complement
insufficient information provided by the single frame, and design a novel
temporal framework with a temporal constraint for interacting hand motion
smoothness. On the other hand, we further propose an interpenetration detection
module to produce kinetically plausible interacting hands without physical
collisions. Extensive experiments are performed to validate the effectiveness
of our proposed framework, which achieves new state-of-the-art performance on
public benchmarks.
- Abstract(参考訳): モノラルなRGBデータから相互作用する手を再構築することは難しい作業であり、例えば、自己と相互の閉塞や類似したテクスチャなど、多くの干渉要因が伴う。
それまでの作業では、物理的に妥当な関係をモデル化することなく、単一のRGB画像からの情報しか活用できなかった。
本研究は,空間的時空間情報を明示的に活用し,より優れたハンドリコンストラクションを実現することを目的としている。
一方,1つのフレームで提供される情報不足を補うために時間的文脈を活用し,手の動きの滑らかさを対話するための時間的制約を伴う新しい時間的枠組みを設計する。
また, 物理的衝突を伴わずに, 動的に再現可能な手を作るための相互浸透検出モジュールを提案する。
提案フレームワークの有効性を検証するために,公開ベンチマークで新たな最先端性能を実現するための広範囲な実験を行った。
関連論文リスト
- Enhanced Spatio-Temporal Context for Temporally Consistent Robust 3D
Human Motion Recovery from Monocular Videos [5.258814754543826]
本稿では,モノクロ映像からの時間的一貫した動き推定手法を提案する。
汎用的なResNetのような機能を使う代わりに、本手法ではボディ認識機能表現と独立したフレーム単位のポーズを使用する。
提案手法は, 高速化誤差を著しく低減し, 既存の最先端手法よりも優れる。
論文 参考訳(メタデータ) (2023-11-20T10:53:59Z) - Physical Interaction: Reconstructing Hand-object Interactions with
Physics [17.90852804328213]
本稿では, 復元のあいまいさを解消する物理に基づく手法を提案する。
まず、手動物体の力に基づく動的モデルを提案し、これは観測されていない接触を回復し、また可塑性接触力の解法である。
実験により,提案手法は物理的に可塑性とより正確な手-物体相互作用の両方を再構成することを示した。
論文 参考訳(メタデータ) (2022-09-22T07:41:31Z) - Hierarchical Temporal Transformer for 3D Hand Pose Estimation and Action
Recognition from Egocentric RGB Videos [50.74218823358754]
我々は,時間的情報を利用してロバストな推定を行うトランスフォーマーベースのフレームワークを開発した。
2つのカスケード変換器エンコーダを用いたネットワーク階層を構築し,まず手振り推定の短期的キューを利用する。
提案手法は,FPHAとH2Oの2つの個人手動作ベンチマークにおいて競合する結果を得る。
論文 参考訳(メタデータ) (2022-09-20T05:52:54Z) - Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based
Motion Recognition [62.46544616232238]
従来の動作認識手法は、密結合した多時間表現によって有望な性能を実現している。
本稿では,RGB-D に基づく動作認識において引き起こされた表現を分離し,再分離することを提案する。
論文 参考訳(メタデータ) (2021-12-16T18:59:47Z) - RobustFusion: Robust Volumetric Performance Reconstruction under
Human-object Interactions from Monocular RGBD Stream [27.600873320989276]
現実のシナリオでは、さまざまなオブジェクトと複雑な相互作用を持つ人間のパフォーマンスの高品質の4D再構築が不可欠です。
近年の進歩は、信頼性の高い性能回復には至っていない。
人間と物体のインタラクションシナリオのための堅牢なボリュームパフォーマンス再構築システムであるRobustFusionを提案する。
論文 参考訳(メタデータ) (2021-04-30T08:41:45Z) - SeqHAND:RGB-Sequence-Based 3D Hand Pose and Shape Estimation [48.456638103309544]
RGB画像に基づく3次元手ポーズ推定は長い間研究されてきた。
本研究では,人間の手の動きを模倣する合成データセットを生成する手法を提案する。
本研究では,3次元ポーズ推定における時間情報の利用により,一般的なポーズ推定が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-07-10T05:11:14Z) - Joint Hand-object 3D Reconstruction from a Single Image with
Cross-branch Feature Fusion [78.98074380040838]
特徴空間において手とオブジェクトを共同で検討し、2つの枝の相互性について検討する。
入力されたRGB画像に推定深度マップを付加するために補助深度推定モジュールを用いる。
提案手法は,オブジェクトの復元精度において既存手法よりも優れていた。
論文 参考訳(メタデータ) (2020-06-28T09:50:25Z) - Leveraging Photometric Consistency over Time for Sparsely Supervised
Hand-Object Reconstruction [118.21363599332493]
本稿では,ビデオ中のフレームの粗いサブセットに対してのみアノテーションが利用できる場合に,時間とともに光度整合性を活用する手法を提案する。
本モデルでは,ポーズを推定することにより,手や物体を3Dで共同で再構成するカラーイメージをエンドツーエンドに訓練する。
提案手法は,3次元手動画像再構成の精度向上に有効であることを示す。
論文 参考訳(メタデータ) (2020-04-28T12:03:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。