Continuous and Reversible Electrical Tuning of Fluorescent Decay Rate via Fano Resonance
- URL: http://arxiv.org/abs/2412.20199v1
- Date: Sat, 28 Dec 2024 16:20:19 GMT
- Title: Continuous and Reversible Electrical Tuning of Fluorescent Decay Rate via Fano Resonance
- Authors: Emre Ozan Polat, Zafer Artvin, Yusuf Şaki, Alpan Bek, Ramazan Sahin,
- Abstract summary: An auxiliary quantum object (QO) can introduce a Fano transparency in the plasmonic spectrum of a metal-shell nanoparticles.
We show that an auxiliary QO, located at the hotspot of the CSNP, can modify the LDOS, hence the decay rate of an excited dipole.
This phenomenon emerges as an invaluable tool to implement in integrated quantum technologies.
- Score: 2.3592914313389253
- License:
- Abstract: Decay rate of an atomic or molecular dipole depends on the local density of optical states (LDOS) -- Purcell effect -- which can significantly be enhanced near a dielectric-core metal-shell nanoparticle (CSNP). On top of that, an auxiliary quantum object (QO) can introduce a Fano transparency in the plasmonic spectrum of the CSNP. Here, we show that an auxiliary QO, located at the hotspot of the CSNP, can modify the LDOS, hence the decay rate of an excited dipole. Moreover, by controlling the resonance of the auxiliary QO via an applied voltage, one can continuously and reversibly tune both the radiative and nonradiative decay rates of the dipole up to 2 orders-of-magnitude. This phenomenon emerges as an invaluable tool to implement in integrated quantum technologies, enabling realization of on-demand entanglement/single-photon sources, controlled execution of quantum gates and electrical-control of superradiant-like phase transitions. It also bears potential for application in super-resolution microscopy and surface-enhanced Raman spectroscopy (SERS).
Related papers
- Cavity-Quantum Electrodynamics with Moiré Flatband Photonic Crystals [35.119260614523256]
A quantum dot can be tuned by a factor of 40, ranging from 42 ps to 1692 ps, which is attributed to strong Purcell enhancement and Purcell inhibition effects.
Our findings pave the way for moir'e flatband cavity-enhanced quantum light sources, quantum optical switches, and quantum nodes for quantum internet applications.
arXiv Detail & Related papers (2024-11-25T18:52:11Z) - Stark Control of Plexcitonic States in Incoherent Quantum Systems [3.10770247120758]
We show coherent control of plexcitonic states in (i) an off-resonant and (ii) a resonant coupled quantum systems through optical Stark effect (OSE)
We analyze a hybrid plasmon-emitter system which exhibits tunable Fano resonance, Stark induced transparency (SIT) and vacuum Rabi splitting due to Stark degenerate shift in the states of quantum emitter (QE)
arXiv Detail & Related papers (2024-06-27T13:49:42Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Enhanced coherent light-matter interaction and room-temperature quantum
yield of plasmonic resonances engineered by a chiral exceptional point [1.074267520911262]
We propose to tailor the local density of states (LDOS) of plasmonic resonances by integrating with a photonic cavity operating at a chiral exceptional point (CEP)
A quantized few-mode theory is employed to reveal that the LDOS of the proposed hybrid cavity can evolve into sub-tzian lineshape, with order-of-magnitude linewidth narrowing.
This results in the enhanced coherent light-matter interaction accompanied by the reduced dissipation of polaritonic states.
arXiv Detail & Related papers (2023-08-08T13:10:04Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Jaynes-Cummings interaction between low energy free-electrons and cavity
photons [0.571097144710995]
We propose a new approach to realize the Jaynes-Cummings Hamiltonian using low energy free-electrons coupled to dielectric microcavities.
Our approach utilizes quantum recoil, which causes a large detuning that inhibits the emission of multiple consecutive photons.
We show that this approach can be used for generation of single photons with unity efficiency and high fidelity.
arXiv Detail & Related papers (2023-02-03T07:06:51Z) - Photoneutralization of charges in GaAs quantum dot based entangled
photon emitters [0.923921787880063]
We show that emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
Our finding demonstrates that the emission quenching can be actively suppressed by controlling the balance of free electrons and holes in the vicinity of the quantum dot.
arXiv Detail & Related papers (2021-10-05T20:25:52Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.