Electron-beam-induced quantum interference effects in a multi-level quantum emitter
- URL: http://arxiv.org/abs/2501.19230v1
- Date: Fri, 31 Jan 2025 15:41:52 GMT
- Title: Electron-beam-induced quantum interference effects in a multi-level quantum emitter
- Authors: H. B. Crispin, N. Talebi,
- Abstract summary: Cathodoluminescence spectroscopy has emerged as a novel platform for nanoscale control of nonclassical features of light.
We show that quantum interference can arise between the different relaxation pathways.
We find that the excitation rate, initial state of the emitter, and excited level spacing play a crucial role in determining the influence of interference.
- Score: 0.0
- License:
- Abstract: Cathodoluminescence spectroscopy has recently emerged as a novel platform for nanoscale control of nonclassical features of light. Here, we propose a theoretical model for cathodoluminescence from a multi-level quantum emitter. Employing a master equation approach and treating the electron-beam excitation as an incoherent broadband field source, we show that quantum interference can arise between the different relaxation pathways. The induced-interference can significantly modify the time-dependent spectra resulting in the enhancement or suppression of cathodoluminescence. We find that the excitation rate, initial state of the emitter, and excited level spacing play a crucial role in determining the influence of interference. Our findings shed light on electron-beam-induced quantum interference in cathodoluminescence and provides a theoretical basis for exploring quantum optical phenomena in electron-driven multi-level systems.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Band Gap Engineering and Controlling Transport Properties of Single
Photons in Periodic and Disordered Jaynes-Cummings Arrays [0.0]
We study the single photon transport properties in periodic and position-disordered Jaynes-Cummings arrays.
In the disordered case, we find that the single photon transmission curves show the disappearance of band formation.
The results of this work may find application in the study of quantum many-body effects in the optical domain.
arXiv Detail & Related papers (2024-01-26T22:32:21Z) - Quantum coherence and interference of a single moir\'e exciton in
nano-fabricated twisted semiconductor heterobilayers [7.407499080938729]
Moir'e potential acts as periodic quantum confinement for optically generated exciton, generating spatially ordered quantum system.
We have demonstrated a new method to realize the optical observation of quantum coherence and interference of a single moir'e exciton.
The observed quantum coherence and interference of moir'e exciton will facilitate potential application toward quantum technologies based on moir'e quantum systems.
arXiv Detail & Related papers (2023-09-06T10:12:09Z) - Enhanced coherent light-matter interaction and room-temperature quantum
yield of plasmonic resonances engineered by a chiral exceptional point [1.074267520911262]
We propose to tailor the local density of states (LDOS) of plasmonic resonances by integrating with a photonic cavity operating at a chiral exceptional point (CEP)
A quantized few-mode theory is employed to reveal that the LDOS of the proposed hybrid cavity can evolve into sub-tzian lineshape, with order-of-magnitude linewidth narrowing.
This results in the enhanced coherent light-matter interaction accompanied by the reduced dissipation of polaritonic states.
arXiv Detail & Related papers (2023-08-08T13:10:04Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
arXiv Detail & Related papers (2021-05-18T21:15:57Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Control of single quantum emitters in bio-inspired aperiodic
nano-photonic devices [0.0]
Enhancing light-matter interactions on a chip is of paramount importance to study nano- and quantum optics effects.
We report on the demonstration of enhanced light-matter interaction and Purcell effects on a chip, based on bio-inspired aperiodic devices fabricated in silicon nitride and gallium arsenide.
arXiv Detail & Related papers (2020-01-18T20:40:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.