SLEM: Machine Learning for Path Modeling and Causal Inference with Super
Learner Equation Modeling
- URL: http://arxiv.org/abs/2308.04365v5
- Date: Tue, 2 Jan 2024 14:47:26 GMT
- Title: SLEM: Machine Learning for Path Modeling and Causal Inference with Super
Learner Equation Modeling
- Authors: Matthew J. Vowels
- Abstract summary: Causal inference is a crucial goal of science, enabling researchers to arrive at meaningful conclusions using observational data.
Path models, Structural Equation Models (SEMs) and Directed Acyclic Graphs (DAGs) provide a means to unambiguously specify assumptions regarding the causal structure underlying a phenomenon.
We propose Super Learner Equation Modeling, a path modeling technique integrating machine learning Super Learner ensembles.
- Score: 3.988614978933934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal inference is a crucial goal of science, enabling researchers to arrive
at meaningful conclusions regarding the predictions of hypothetical
interventions using observational data. Path models, Structural Equation Models
(SEMs), and, more generally, Directed Acyclic Graphs (DAGs), provide a means to
unambiguously specify assumptions regarding the causal structure underlying a
phenomenon. Unlike DAGs, which make very few assumptions about the functional
and parametric form, SEM assumes linearity. This can result in functional
misspecification which prevents researchers from undertaking reliable effect
size estimation. In contrast, we propose Super Learner Equation Modeling, a
path modeling technique integrating machine learning Super Learner ensembles.
We empirically demonstrate its ability to provide consistent and unbiased
estimates of causal effects, its competitive performance for linear models when
compared with SEM, and highlight its superiority over SEM when dealing with
non-linear relationships. We provide open-source code, and a tutorial notebook
with example usage, accentuating the easy-to-use nature of the method.
Related papers
- Exploring Patterns Behind Sports [3.2838877620203935]
This paper presents a comprehensive framework for time series prediction using a hybrid model that combines ARIMA and LSTM.
The model incorporates feature engineering techniques, including embedding and PCA, to transform raw data into a lower-dimensional representation.
arXiv Detail & Related papers (2025-02-11T11:51:07Z) - Modeling and Discovering Direct Causes for Predictive Models [0.0]
We introduce a causal modeling framework that captures the input-output behavior of predictive models.
The framework enables us to define and identify features that directly cause the predictions.
We show two assumptions under which the direct causes can be discovered from data, one of which further simplifies the discovery process.
arXiv Detail & Related papers (2024-12-03T22:25:42Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
We develop an influence functions framework to address these challenges.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
We show how a PAC-Bayes bound is obtained for a general class of models, characterizing factors which influence performance in the interpolating regime.
We quantify how the test error for overparameterized models achieving effectively zero training error depends on the quality of the implicit regularization imposed by e.g. the combination of model, parameter-initialization scheme.
arXiv Detail & Related papers (2023-11-13T01:48:08Z) - Directed Cyclic Graph for Causal Discovery from Multivariate Functional
Data [15.26007975367927]
We introduce a functional linear structural equation model for causal structure learning.
To enhance interpretability, our model involves a low-dimensional causal embedded space.
We prove that the proposed model is causally identifiable under standard assumptions.
arXiv Detail & Related papers (2023-10-31T15:19:24Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
We propose a technique for extracting submodels from singular models.
Our method enforces model identifiability during training.
We show how the method can be applied to more complex models like deep neural networks.
arXiv Detail & Related papers (2022-06-17T07:50:22Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Causal Inference with Deep Causal Graphs [0.0]
Parametric causal modelling techniques rarely provide functionality for counterfactual estimation.
Deep Causal Graphs is an abstract specification of the required functionality for a neural network to model causal distributions.
We demonstrate its expressive power in modelling complex interactions and showcase applications to machine learning explainability and fairness.
arXiv Detail & Related papers (2020-06-15T13:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.