Modeling and Discovering Direct Causes for Predictive Models
- URL: http://arxiv.org/abs/2412.02878v1
- Date: Tue, 03 Dec 2024 22:25:42 GMT
- Title: Modeling and Discovering Direct Causes for Predictive Models
- Authors: Yizuo Chen, Amit Bhatia,
- Abstract summary: We introduce a causal modeling framework that captures the input-output behavior of predictive models.
The framework enables us to define and identify features that directly cause the predictions.
We show two assumptions under which the direct causes can be discovered from data, one of which further simplifies the discovery process.
- Score: 0.0
- License:
- Abstract: We introduce a causal modeling framework that captures the input-output behavior of predictive models (e.g., machine learning models) by representing it using causal graphs. The framework enables us to define and identify features that directly cause the predictions, which has broad implications for data collection and model evaluation. We show two assumptions under which the direct causes can be discovered from data, one of which further simplifies the discovery process. In addition to providing sound and complete algorithms, we propose an optimization technique based on an independence rule that can be integrated with the algorithms to speed up the discovery process both theoretically and empirically.
Related papers
- No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.
Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.
Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - Learning Structural Causal Models from Ordering: Identifiable Flow Models [19.99352354910655]
We introduce a set of flow models that can recover component-wise, invertible transformation of variables.
We propose design improvements that enable simultaneous learning of all causal mechanisms.
Our method achieves a significant reduction in computational time compared to existing diffusion-based techniques.
arXiv Detail & Related papers (2024-12-13T04:25:56Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - SLEM: Machine Learning for Path Modeling and Causal Inference with Super
Learner Equation Modeling [3.988614978933934]
Causal inference is a crucial goal of science, enabling researchers to arrive at meaningful conclusions using observational data.
Path models, Structural Equation Models (SEMs) and Directed Acyclic Graphs (DAGs) provide a means to unambiguously specify assumptions regarding the causal structure underlying a phenomenon.
We propose Super Learner Equation Modeling, a path modeling technique integrating machine learning Super Learner ensembles.
arXiv Detail & Related papers (2023-08-08T16:04:42Z) - Modeling Causal Mechanisms with Diffusion Models for Interventional and Counterfactual Queries [10.818661865303518]
We consider the problem of answering observational, interventional, and counterfactual queries in a causally sufficient setting.
We introduce diffusion-based causal models (DCM) to learn causal mechanisms, that generate unique latent encodings.
Our empirical evaluations demonstrate significant improvements over existing state-of-the-art methods for answering causal queries.
arXiv Detail & Related papers (2023-02-02T04:08:08Z) - Let us Build Bridges: Understanding and Extending Diffusion Generative
Models [19.517597928769042]
Diffusion-based generative models have achieved promising results recently, but raise an array of open questions.
This work tries to re-exam the overall framework in order to gain better theoretical understandings.
We present 1) a first theoretical error analysis for learning diffusion generation models, and 2) a simple and unified approach to learning on data from different discrete and constrained domains.
arXiv Detail & Related papers (2022-08-31T08:58:10Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
Causal graphs (CGs) are compact representations of the knowledge of the data generating processes behind the data distributions.
We propose a model-agnostic data augmentation method that allows us to exploit the prior knowledge of the conditional independence (CI) relations.
We experimentally show that the proposed method is effective in improving the prediction accuracy, especially in the small-data regime.
arXiv Detail & Related papers (2021-02-27T06:13:59Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.