Causal Inference with Deep Causal Graphs
- URL: http://arxiv.org/abs/2006.08380v1
- Date: Mon, 15 Jun 2020 13:03:33 GMT
- Title: Causal Inference with Deep Causal Graphs
- Authors: \'Alvaro Parafita and Jordi Vitri\`a
- Abstract summary: Parametric causal modelling techniques rarely provide functionality for counterfactual estimation.
Deep Causal Graphs is an abstract specification of the required functionality for a neural network to model causal distributions.
We demonstrate its expressive power in modelling complex interactions and showcase applications to machine learning explainability and fairness.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parametric causal modelling techniques rarely provide functionality for
counterfactual estimation, often at the expense of modelling complexity. Since
causal estimations depend on the family of functions used to model the data,
simplistic models could entail imprecise characterizations of the generative
mechanism, and, consequently, unreliable results. This limits their
applicability to real-life datasets, with non-linear relationships and high
interaction between variables. We propose Deep Causal Graphs, an abstract
specification of the required functionality for a neural network to model
causal distributions, and provide a model that satisfies this contract:
Normalizing Causal Flows. We demonstrate its expressive power in modelling
complex interactions and showcase applications of the method to machine
learning explainability and fairness, using true causal counterfactuals.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Directed Cyclic Graph for Causal Discovery from Multivariate Functional
Data [15.26007975367927]
We introduce a functional linear structural equation model for causal structure learning.
To enhance interpretability, our model involves a low-dimensional causal embedded space.
We prove that the proposed model is causally identifiable under standard assumptions.
arXiv Detail & Related papers (2023-10-31T15:19:24Z) - From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling [17.074858228123706]
We focus on fundamental theory, methodology, drawbacks, datasets, and metrics.
We cover applications of causal generative models in fairness, privacy, out-of-distribution generalization, precision medicine, and biological sciences.
arXiv Detail & Related papers (2023-10-17T05:45:32Z) - SLEM: Machine Learning for Path Modeling and Causal Inference with Super
Learner Equation Modeling [3.988614978933934]
Causal inference is a crucial goal of science, enabling researchers to arrive at meaningful conclusions using observational data.
Path models, Structural Equation Models (SEMs) and Directed Acyclic Graphs (DAGs) provide a means to unambiguously specify assumptions regarding the causal structure underlying a phenomenon.
We propose Super Learner Equation Modeling, a path modeling technique integrating machine learning Super Learner ensembles.
arXiv Detail & Related papers (2023-08-08T16:04:42Z) - Neural Graphical Models [2.6842860806280058]
We introduce Neural Graphical Models (NGMs) to represent complex feature dependencies with reasonable computational costs.
We capture the dependency structure between the features along with their complex function representations by using a neural network as a multi-task learning framework.
NGMs can fit generic graph structures including directed, undirected and mixed-edge graphs as well as support mixed input data types.
arXiv Detail & Related papers (2022-10-02T07:59:51Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - LowFER: Low-rank Bilinear Pooling for Link Prediction [4.110108749051657]
We propose a factorized bilinear pooling model, commonly used in multi-modal learning, for better fusion of entities and relations.
Our model naturally generalizes decomposition Tucker based TuckER model, which has been shown to generalize other models.
We evaluate on real-world datasets, reaching on par or state-of-the-art performance.
arXiv Detail & Related papers (2020-08-25T07:33:52Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z) - Learning Causal Models Online [103.87959747047158]
Predictive models can rely on spurious correlations in the data for making predictions.
One solution for achieving strong generalization is to incorporate causal structures in the models.
We propose an online algorithm that continually detects and removes spurious features.
arXiv Detail & Related papers (2020-06-12T20:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.