論文の概要: Character-level NMT and language similarity
- arxiv url: http://arxiv.org/abs/2308.04398v1
- Date: Tue, 8 Aug 2023 17:01:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-09 11:55:43.665909
- Title: Character-level NMT and language similarity
- Title(参考訳): 文字レベルNMTと言語類似性
- Authors: Josef Jon and Ond\v{r}ej Bojar
- Abstract要約: チェコ語とクロアチア語、ドイツ語、ハンガリー語、スロバキア語、スペイン語の翻訳における言語類似度およびトレーニングデータセットのサイズに対する文字レベルのニューラルマシン翻訳の有効性について検討した。
MT自動測定値を用いてモデルの評価を行い、類似言語間の翻訳が文字レベルの入力セグメンテーションの恩恵を受けることを示す。
我々は、すでに訓練済みのサブワードレベルのモデルを文字レベルに微調整することで、ギャップを埋めることが可能である、という以前の知見を確認した。
- 参考スコア(独自算出の注目度): 1.90365714903665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the effectiveness of character-level neural machine translation
using Transformer architecture for various levels of language similarity and
size of the training dataset on translation between Czech and Croatian, German,
Hungarian, Slovak, and Spanish. We evaluate the models using automatic MT
metrics and show that translation between similar languages benefits from
character-level input segmentation, while for less related languages,
character-level vanilla Transformer-base often lags behind subword-level
segmentation. We confirm previous findings that it is possible to close the gap
by finetuning the already trained subword-level models to character-level.
- Abstract(参考訳): 本稿では,チェコ語とクロアチア語,ドイツ語,ハンガリー語,スロバキア語,スペイン語の翻訳における,トランスフォーマーアーキテクチャを用いた文字レベルのニューラルネットワーク翻訳の有効性について検討する。
自動mtメトリクスを用いてモデルを評価し,類似言語間の翻訳が文字レベルの入力セグメンテーションに有益であることを示すが,関連度の低い言語では,文字レベルのバニラトランスフォーマベースがサブワードレベルのセグメンテーションに遅れることが多い。
我々は、既に訓練済みのサブワードレベルのモデルを文字レベルに微調整することで、ギャップを閉じることができるという以前の発見を確認する。
関連論文リスト
- Hierarchical Autoregressive Transformers: Combining Byte- and Word-Level Processing for Robust, Adaptable Language Models [3.382910438968506]
トークン化は自然言語処理の基本的なステップであり、テキストを計算モデルが処理できる単位に分割する。
文字レベルと単語レベルの処理を組み合わせた自己回帰型言語モデリングのための階層的アーキテクチャについて検討する。
我々は、70億のパラメータをスケールして、階層変換器がサブワードトケナイザベースのモデルの下流タスク性能と一致することを実証する。
論文 参考訳(メタデータ) (2025-01-17T17:51:53Z) - MAGNET: Improving the Multilingual Fairness of Language Models with Adaptive Gradient-Based Tokenization [81.83460411131931]
マルチ言語設定では、非ラテン語スクリプトと低リソース言語は通常、言語モデルの実用性、効率、コストの点で不利である。
適応的勾配に基づくサブワードトークン化による過分割を低減するために,多言語適応型勾配ベーストークン化を提案する。
論文 参考訳(メタデータ) (2024-07-11T18:59:21Z) - T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
言語間テキスト分類は通常、様々な言語で事前訓練された大規模多言語言語モデル(LM)に基づいて構築される。
本稿では,古典的な「翻訳とテスト」パイプラインを再考し,翻訳と分類の段階を適切に分離することを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:33:22Z) - Decomposed Prompting for Machine Translation Between Related Languages
using Large Language Models [55.35106713257871]
DecoMTは、単語チャンク翻訳のシーケンスに翻訳プロセスを分解する、数発のプロンプトの新しいアプローチである。
DecoMTはBLOOMモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-22T14:52:47Z) - Subword Segmental Machine Translation: Unifying Segmentation and Target
Sentence Generation [7.252933737829635]
サブワードセグメント機械翻訳(SSMT)は、目標文を生成するために共同学習しながら、ターゲット文をセグメント化することを学ぶ。
6つの翻訳方向にわたる実験により、SSMTは形態学的にリッチな凝集言語に対するchrFスコアを改善することが示された。
論文 参考訳(メタデータ) (2023-05-11T17:44:29Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
我々は,グラフ対応トランスフォーマアーキテクチャにより拡張されたBERTに基づくシーケンスタグ付けモデルを提案し,コンテキストにおけるコロケーション認識の課題について評価した。
以上の結果から, モデルアーキテクチャにおける構文的依存関係を明示的に符号化することは有用であり, 英語, スペイン語, フランス語におけるコロケーションのタイプ化の差異について考察する。
論文 参考訳(メタデータ) (2022-05-23T16:47:37Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
言語間モデルでは、多くの異なる言語に対する表現は同じ空間に存在している。
我々は,bitext検索性能の形式で,言語間アライメントのタスクベース尺度を計算した。
我々はこれらのアライメント指標の潜在的な予測因子として言語的、準言語的、および訓練関連の特徴について検討する。
論文 参考訳(メタデータ) (2021-09-13T21:05:37Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
我々はTransformerエンコーダにクロスアテンションモジュールを挿入し、言語間の相互依存を明確に構築する。
独自の言語でコンテキストにのみ条件付けされたマスク付き単語の予測の退化を効果的に回避することができる。
提案した言語間モデルでは,XTREMEベンチマークのさまざまな言語間理解タスクに対して,最先端の新たな結果が提供される。
論文 参考訳(メタデータ) (2020-10-30T03:41:38Z) - Character-level Transformer-based Neural Machine Translation [5.699756532377753]
本稿では,トランスフォーマーをベースとした新しい手法について論じる。スピードと品質を,サブワードレベルでのトランスフォーマーとキャラクタレベルで比較する。
WMT'15: DE-EN, CS-EN, FI-EN, RU-ENの4つの言語対について評価を行った。
提案された新しいアーキテクチャは、単一のGPUでトレーニングすることが可能で、キャラクタレベルのTransformerよりも34%高速である。
論文 参考訳(メタデータ) (2020-05-22T15:40:43Z) - Character-Level Translation with Self-attention [9.864260997723974]
文字レベルのニューラルマシン翻訳における自己注意モデルの有効性について検討する。
本稿では,標準変圧器モデルとエンコーダブロックがコンボリューションを用いて周辺文字からの情報を結合する新しい変種を検証した。
我々の変圧器変種はキャラクタレベルで標準変圧器より一貫して優れ、より堅牢なキャラクタレベルのアライメントを学習しながらより高速に収束する。
論文 参考訳(メタデータ) (2020-04-30T14:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。