Probabilistic Invariant Learning with Randomized Linear Classifiers
- URL: http://arxiv.org/abs/2308.04412v2
- Date: Thu, 28 Sep 2023 00:00:16 GMT
- Title: Probabilistic Invariant Learning with Randomized Linear Classifiers
- Authors: Leonardo Cotta, Gal Yehuda, Assaf Schuster, Chris J. Maddison
- Abstract summary: We show how to leverage randomness and design models that are both expressive and invariant but use less resources.
Inspired by randomized algorithms, we propose a class of binary classification models called Randomized Linears (RLCs)
- Score: 24.485477981244593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing models that are both expressive and preserve known invariances of
tasks is an increasingly hard problem. Existing solutions tradeoff invariance
for computational or memory resources. In this work, we show how to leverage
randomness and design models that are both expressive and invariant but use
less resources. Inspired by randomized algorithms, our key insight is that
accepting probabilistic notions of universal approximation and invariance can
reduce our resource requirements. More specifically, we propose a class of
binary classification models called Randomized Linear Classifiers (RLCs). We
give parameter and sample size conditions in which RLCs can, with high
probability, approximate any (smooth) function while preserving invariance to
compact group transformations. Leveraging this result, we design three RLCs
that are provably probabilistic invariant for classification tasks over sets,
graphs, and spherical data. We show how these models can achieve probabilistic
invariance and universality using less resources than (deterministic) neural
networks and their invariant counterparts. Finally, we empirically demonstrate
the benefits of this new class of models on invariant tasks where deterministic
invariant neural networks are known to struggle.
Related papers
- Computing Systemic Risk Measures with Graph Neural Networks [1.6874375111244329]
This paper investigates systemic risk measures for financial networks of explicitly modelled bilateral liabilities.
We study numerical methods for the approximation of systemic risk and optimal random allocations.
arXiv Detail & Related papers (2024-09-30T10:18:13Z) - Weighted Risk Invariance: Domain Generalization under Invariant Feature Shift [41.60879054101201]
Learning models whose predictions are invariant under multiple environments is a promising approach.
We show that learning invariant models underperform under certain conditions.
We propose a practical to implement WRI by learning the correlations $p(X_textinv) and the model parameters simultaneously.
arXiv Detail & Related papers (2024-07-25T23:27:10Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models.
We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - Training Implicit Generative Models via an Invariant Statistical Loss [3.139474253994318]
Implicit generative models have the capability to learn arbitrary complex data distributions.
On the downside, training requires telling apart real data from artificially-generated ones using adversarial discriminators.
We develop a discriminator-free method for training one-dimensional (1D) generative implicit models.
arXiv Detail & Related papers (2024-02-26T09:32:28Z) - Winning Prize Comes from Losing Tickets: Improve Invariant Learning by
Exploring Variant Parameters for Out-of-Distribution Generalization [76.27711056914168]
Out-of-Distribution (OOD) Generalization aims to learn robust models that generalize well to various environments without fitting to distribution-specific features.
Recent studies based on Lottery Ticket Hypothesis (LTH) address this problem by minimizing the learning target to find some of the parameters that are critical to the task.
We propose Exploring Variant parameters for Invariant Learning (EVIL) which also leverages the distribution knowledge to find the parameters that are sensitive to distribution shift.
arXiv Detail & Related papers (2023-10-25T06:10:57Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
arXiv Detail & Related papers (2022-11-11T21:58:15Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks.
We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems.
We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-02-08T16:16:11Z) - Learning with invariances in random features and kernel models [19.78800773518545]
We introduce two classes of models: invariant random features and invariant kernel methods.
We characterize the test error of invariant methods in a high-dimensional regime in which the sample size and number of hidden units scale as estimators in the dimension.
We show that exploiting invariance in the architecture saves a $dalpha$ factor ($d$ stands for the dimension) in sample size and number of hidden units to achieve the same test error as for unstructured architectures.
arXiv Detail & Related papers (2021-02-25T23:06:21Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z) - Open Set Recognition with Conditional Probabilistic Generative Models [51.40872765917125]
We propose Conditional Probabilistic Generative Models (CPGM) for open set recognition.
CPGM can detect unknown samples but also classify known classes by forcing different latent features to approximate conditional Gaussian distributions.
Experiment results on multiple benchmark datasets reveal that the proposed method significantly outperforms the baselines.
arXiv Detail & Related papers (2020-08-12T06:23:49Z) - Parameter Space Factorization for Zero-Shot Learning across Tasks and
Languages [112.65994041398481]
We propose a Bayesian generative model for the space of neural parameters.
We infer the posteriors over such latent variables based on data from seen task-language combinations.
Our model yields comparable or better results than state-of-the-art, zero-shot cross-lingual transfer methods.
arXiv Detail & Related papers (2020-01-30T16:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.