論文の概要: Quantization Aware Factorization for Deep Neural Network Compression
- arxiv url: http://arxiv.org/abs/2308.04595v1
- Date: Tue, 8 Aug 2023 21:38:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-10 15:50:07.053009
- Title: Quantization Aware Factorization for Deep Neural Network Compression
- Title(参考訳): 深層ニューラルネットワーク圧縮のための量子化認識因子化
- Authors: Daria Cherniuk, Stanislav Abukhovich, Anh-Huy Phan, Ivan Oseledets,
Andrzej Cichocki, Julia Gusak
- Abstract要約: 畳み込み層と完全連結層の分解は、ニューラルネットワークにおけるパラメータとFLOPを減らす効果的な方法である。
従来のトレーニング後量子化手法は重み付きネットワークに適用され、精度が低下する。
これは、分解された近似を量子化因子で直接発見するアルゴリズムを開発する動機となった。
- 参考スコア(独自算出の注目度): 20.04951101799232
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Tensor decomposition of convolutional and fully-connected layers is an
effective way to reduce parameters and FLOP in neural networks. Due to memory
and power consumption limitations of mobile or embedded devices, the
quantization step is usually necessary when pre-trained models are deployed. A
conventional post-training quantization approach applied to networks with
decomposed weights yields a drop in accuracy. This motivated us to develop an
algorithm that finds tensor approximation directly with quantized factors and
thus benefit from both compression techniques while keeping the prediction
quality of the model. Namely, we propose to use Alternating Direction Method of
Multipliers (ADMM) for Canonical Polyadic (CP) decomposition with factors whose
elements lie on a specified quantization grid. We compress neural network
weights with a devised algorithm and evaluate it's prediction quality and
performance. We compare our approach to state-of-the-art post-training
quantization methods and demonstrate competitive results and high flexibility
in achiving a desirable quality-performance tradeoff.
- Abstract(参考訳): 畳み込み層と完全連結層のテンソル分解は、ニューラルネットワークのパラメータとフラップを減らす効果的な方法である。
モバイルまたは組み込みデバイスのメモリと消費電力の制限のため、事前トレーニングされたモデルがデプロイされる場合、量子化ステップが通常必要となる。
従来のトレーニング後量子化手法は、分割重み付きネットワークに適用され、精度が低下する。
これにより、テンソル近似を量子化因子で直接求めるアルゴリズムを開発し、モデルの予測品質を維持しながら、両方の圧縮手法の恩恵を受けることができる。
すなわち、特定の量子化格子上に存在する要素を持つ正準ポリアディック(CP)分解に、 Alternating Direction Method of Multipliers (ADMM) を用いることを提案する。
ニューラルネットワークの重み付けを考案したアルゴリズムで圧縮し,その予測品質と性能を評価する。
本手法を最先端のトレーニング後量子化手法と比較し,望ましい品質・パフォーマンストレードオフの達成において,高い柔軟性と競争性を示す。
関連論文リスト
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
トレーニングの初期段階において、ニューラルネットワークの無関係な層を特定し、排除できるアルゴリズムを提案する。
本研究では,非線形区間を切断した後にネットワークを流れる情報の流れを,非線形ネットワーク区間の周囲の残差接続を用いた構造を用いる。
論文 参考訳(メタデータ) (2024-06-06T23:19:57Z) - Post-Training Quantization for Re-parameterization via Coarse & Fine
Weight Splitting [13.270381125055275]
本稿では,重みの量子化誤差を低減するために,粗大かつ微細な重み分割法(CFWS)を提案する。
我々は、活性化のための最適な量子化尺度を決定するために改良されたKLメトリックを開発した。
例えば、量子化されたRepVGG-A1モデルは、わずか0.3%の精度損失を示す。
論文 参考訳(メタデータ) (2023-12-17T02:31:20Z) - BiTAT: Neural Network Binarization with Task-dependent Aggregated
Transformation [116.26521375592759]
量子化は、与えられたニューラルネットワークの高精度ウェイトとアクティベーションを、メモリ使用量と計算量を減らすために、低精度ウェイト/アクティベーションに変換することを目的としている。
コンパクトに設計されたバックボーンアーキテクチャの極端量子化(1ビットの重み/1ビットのアクティベーション)は、深刻な性能劣化をもたらす。
本稿では,性能劣化を効果的に緩和する新しいQAT法を提案する。
論文 参考訳(メタデータ) (2022-07-04T13:25:49Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
学習後ニューラルネットワーク量子化手法であるGPFQを,欲求経路追従機構に基づいて修正する。
単層ネットワークを定量化するためには、相対二乗誤差は本質的に重み数で線形に減衰する。
論文 参考訳(メタデータ) (2022-01-26T18:47:38Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - Compact representations of convolutional neural networks via weight
pruning and quantization [63.417651529192014]
本稿では、音源符号化に基づく畳み込みニューラルネットワーク(CNN)の新しいストレージフォーマットを提案し、重み付けと量子化の両方を活用する。
我々は、全接続層で0.6%、ネットワーク全体で5.44%のスペース占有率を削減し、最低でもベースラインと同じくらいの競争力を発揮する。
論文 参考訳(メタデータ) (2021-08-28T20:39:54Z) - Quantized Proximal Averaging Network for Analysis Sparse Coding [23.080395291046408]
反復アルゴリズムをトレーニング可能なネットワークに展開し,量子化前にスパーシティの学習を容易にする。
圧縮画像回復と磁気共鳴画像再構成への応用を実証する。
論文 参考訳(メタデータ) (2021-05-13T12:05:35Z) - Recurrence of Optimum for Training Weight and Activation Quantized
Networks [4.103701929881022]
低精度の重みとアクティベーションを備えたディープラーニングモデルのトレーニングには、必要な最適化タスクが伴う。
ネットワーク量子化の性質を克服する方法を紹介します。
また,訓練用量子化深層ネットワークにおける重み進化の繰り返し現象の数値的証拠を示す。
論文 参考訳(メタデータ) (2020-12-10T09:14:43Z) - Where Should We Begin? A Low-Level Exploration of Weight Initialization
Impact on Quantized Behaviour of Deep Neural Networks [93.4221402881609]
異なる重みの初期化が重みの最終的な分布と異なるCNNアーキテクチャの活性化に与える影響について、詳細なアブレーション研究を行う。
我々の知る限りでは、ウェイトの初期化とその量子化行動に対する影響について、そのような低レベルで詳細な定量分析を行うのは、私たちは初めてである。
論文 参考訳(メタデータ) (2020-11-30T06:54:28Z) - Gradient $\ell_1$ Regularization for Quantization Robustness [70.39776106458858]
トレーニング後の量子化に対するロバスト性を改善するための単純な正規化スキームを導出する。
量子化対応ネットワークをトレーニングすることにより、異なるビット幅にオンデマンドで量子化できる1組の重みを格納できる。
論文 参考訳(メタデータ) (2020-02-18T12:31:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。