論文の概要: Precision Neural Network Quantization via Learnable Adaptive Modules
- arxiv url: http://arxiv.org/abs/2504.17263v1
- Date: Thu, 24 Apr 2025 05:46:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:53.259249
- Title: Precision Neural Network Quantization via Learnable Adaptive Modules
- Title(参考訳): 学習可能な適応モジュールによる高精度ニューラルネットワーク量子化
- Authors: Wenqiang Zhou, Zhendong Yu, Xinyu Liu, Jiaming Yang, Rong Xiao, Tao Wang, Chenwei Tang, Jiancheng Lv,
- Abstract要約: 量子化アウェアトレーニング(QAT)は、モデルサイズを圧縮し、運用効率を向上させるニューラルネットワーク量子化技術である。
本稿では、適応ステップサイズ量子化(ASQ)と呼ばれる、効果的な学習可能な適応型ニューラルネットワーク量子化法を提案する。
- 参考スコア(独自算出の注目度): 27.323901068182234
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantization Aware Training (QAT) is a neural network quantization technique that compresses model size and improves operational efficiency while effectively maintaining model performance. The paradigm of QAT is to introduce fake quantization operators during the training process, allowing the model to autonomously compensate for information loss caused by quantization. Making quantization parameters trainable can significantly improve the performance of QAT, but at the cost of compromising the flexibility during inference, especially when dealing with activation values with substantially different distributions. In this paper, we propose an effective learnable adaptive neural network quantization method, called Adaptive Step Size Quantization (ASQ), to resolve this conflict. Specifically, the proposed ASQ method first dynamically adjusts quantization scaling factors through a trained module capable of accommodating different activations. Then, to address the rigid resolution issue inherent in Power of Two (POT) quantization, we propose an efficient non-uniform quantization scheme. We utilize the Power Of Square root of Two (POST) as the basis for exponential quantization, effectively handling the bell-shaped distribution of neural network weights across various bit-widths while maintaining computational efficiency through a Look-Up Table method (LUT). Extensive experimental results demonstrate that the proposed ASQ method is superior to the state-of-the-art QAT approaches. Notably that the ASQ is even competitive compared to full precision baselines, with its 4-bit quantized ResNet34 model improving accuracy by 1.2\% on ImageNet.
- Abstract(参考訳): 量子化アウェアトレーニング(QAT)は、モデルサイズを圧縮し、モデル性能を効果的に維持しながら、運用効率を向上させるニューラルネットワーク量子化技術である。
QATのパラダイムは、トレーニングプロセス中に偽の量子化演算子を導入し、量子化による情報損失を自律的に補償することである。
量子化パラメータをトレーニング可能にすることは、QATの性能を著しく向上させることができるが、特にかなり異なる分布を持つアクティベーション値を扱う場合、推論中に柔軟性を妥協するコストがかかる。
本稿では,この競合を解決するために,適応ステップサイズ量子化(ASQ)と呼ばれる,効果的な学習可能な適応ニューラルネットワーク量子化手法を提案する。
具体的には、ASQ法はまず、異なるアクティベーションを調節できる訓練されたモジュールを通して量子化スケーリング因子を動的に調整する。
次に,POT(Power of Two)量子化に固有の厳密な解決問題に対処するため,効率的な非一様量子化方式を提案する。
指数量子化の基礎として2乗の2乗根(POST)を用い,Look-Up Table(LUT)法による計算効率を維持しつつ,様々なビット幅にわたるニューラルネットワーク重みのベル形状分布を効果的に処理する。
実験結果から,ASQ法は最先端QAT法よりも優れていることが示された。
4ビット量子化されたResNet34モデルでは、ImageNetの精度が1.2\%向上している。
関連論文リスト
- RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [53.571195477043496]
本稿では,RoSTE (Rotated Straight-Through-Estimator) というアルゴリズムを提案する。
RoSTEは、量子化を意識した微調整(QA-SFT)と適応的な回転戦略を組み合わせることで、アクティベーションアウトリーを減少させる。
その結果, 予測誤差は収束重みの量子化誤差と直接比例し, 最適化された回転構成により効果的に管理できることが判明した。
論文 参考訳(メタデータ) (2025-02-13T06:44:33Z) - PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks [4.827161693957252]
非量子化要素演算は、低精度モデルの推論コストを支配している。
PikeLPNモデルは、要素演算と乗算累積演算の両方に量子化を適用することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-03-29T18:23:34Z) - Post-Training Quantization for Re-parameterization via Coarse & Fine
Weight Splitting [13.270381125055275]
本稿では,重みの量子化誤差を低減するために,粗大かつ微細な重み分割法(CFWS)を提案する。
我々は、活性化のための最適な量子化尺度を決定するために改良されたKLメトリックを開発した。
例えば、量子化されたRepVGG-A1モデルは、わずか0.3%の精度損失を示す。
論文 参考訳(メタデータ) (2023-12-17T02:31:20Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
ポストトレーニング量子化(PTQ)と量子化学習(QAT)は、拡散モデルを圧縮・加速する2つの主要なアプローチである。
我々は、PTQのような効率でQATレベルの性能を実現するために、EfficientDMと呼ばれる低ビット拡散モデルのためのデータフリーかつパラメータ効率の微調整フレームワークを導入する。
提案手法は, PTQに基づく拡散モデルにおいて, 同様の時間とデータ効率を保ちながら, 性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-10-05T02:51:53Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - Quantization Aware Factorization for Deep Neural Network Compression [20.04951101799232]
畳み込み層と完全連結層の分解は、ニューラルネットワークにおけるパラメータとFLOPを減らす効果的な方法である。
従来のトレーニング後量子化手法は重み付きネットワークに適用され、精度が低下する。
これは、分解された近似を量子化因子で直接発見するアルゴリズムを開発する動機となった。
論文 参考訳(メタデータ) (2023-08-08T21:38:02Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
量子化モデル全体を1つのモデルにカプセル化するための,ニューラルネットワーク重みの新しい垂直層表現について検討する。
理論的には、1つのモデルのトレーニングとメンテナンスのみを必要としながら、オンデマンドサービスの正確なネットワークを達成できます。
論文 参考訳(メタデータ) (2022-12-10T15:57:38Z) - BiTAT: Neural Network Binarization with Task-dependent Aggregated
Transformation [116.26521375592759]
量子化は、与えられたニューラルネットワークの高精度ウェイトとアクティベーションを、メモリ使用量と計算量を減らすために、低精度ウェイト/アクティベーションに変換することを目的としている。
コンパクトに設計されたバックボーンアーキテクチャの極端量子化(1ビットの重み/1ビットのアクティベーション)は、深刻な性能劣化をもたらす。
本稿では,性能劣化を効果的に緩和する新しいQAT法を提案する。
論文 参考訳(メタデータ) (2022-07-04T13:25:49Z) - NIPQ: Noise proxy-based Integrated Pseudo-Quantization [9.207644534257543]
量子化対応トレーニング(QAT)におけるストレートスルー推定器(STE)の不安定収束
アクティベーションと重みの両面において擬似量子化を統一的にサポートする新しいノイズプロキシベース統合擬似量子化(NIPQ)を提案する。
NIPQは、様々なビジョンや言語アプリケーションにおける既存の量子化アルゴリズムよりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2022-06-02T01:17:40Z) - Learnable Companding Quantization for Accurate Low-bit Neural Networks [3.655021726150368]
ディープニューラルネットワークの量子化は、メモリ消費の削減と推論速度の向上に有効な方法である。
非常に低ビットモデルがフル精度モデルに匹敵する精度を達成することは、まだ困難です。
2,3,4ビットモデルのための新しい非一様量子化手法として学習可能なコンパイル量子化(LCQ)を提案する。
論文 参考訳(メタデータ) (2021-03-12T09:06:52Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
効率と精度を両立させるためのフル量子化画像超解像フレームワーク(FQSR)を提案する。
我々は、SRResNet、SRGAN、EDSRを含む複数の主流超解像アーキテクチャに量子化スキームを適用した。
低ビット量子化を用いたFQSRは、5つのベンチマークデータセットの完全精度と比較すると、パー性能で実現できる。
論文 参考訳(メタデータ) (2020-11-29T03:53:49Z) - Gradient $\ell_1$ Regularization for Quantization Robustness [70.39776106458858]
トレーニング後の量子化に対するロバスト性を改善するための単純な正規化スキームを導出する。
量子化対応ネットワークをトレーニングすることにより、異なるビット幅にオンデマンドで量子化できる1組の重みを格納できる。
論文 参考訳(メタデータ) (2020-02-18T12:31:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。