論文の概要: Model of models -- Part 1
- arxiv url: http://arxiv.org/abs/2308.04600v1
- Date: Tue, 8 Aug 2023 21:56:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-10 15:51:21.612077
- Title: Model of models -- Part 1
- Title(参考訳): モデルモデル -- その1
- Authors: Shimon Komarovsky
- Abstract要約: 本稿では,AGIエージェントの主成分として機能する新しい認知モデルを提案する。
このモデルは、成熟したインテリジェンス状態に導入され、以前のモデル、特にAKREMの拡張として導入された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper proposes a new cognitive model, acting as the main component of an
AGI agent. The model is introduced in its mature intelligence state, and as an
extension of previous models, DENN, and especially AKREM, by including
operational models (frames/classes) and will. This model's core assumption is
that cognition is about operating on accumulated knowledge, with the guidance
of an appropriate will. Also, we assume that the actions, part of knowledge,
are learning to be aligned with will, during the evolution phase that precedes
the mature intelligence state. In addition, this model is mainly based on the
duality principle in every known intelligent aspect, such as exhibiting both
top-down and bottom-up model learning, generalization verse specialization, and
more. Furthermore, a holistic approach is advocated for AGI designing, and
cognition under constraints or efficiency is proposed, in the form of
reusability and simplicity. Finally, reaching this mature state is described
via a cognitive evolution from infancy to adulthood, utilizing a consolidation
principle. The final product of this cognitive model is a dynamic operational
memory of models and instances. Lastly, some examples and preliminary ideas for
the evolution phase to reach the mature state are presented.
- Abstract(参考訳): 本稿では,AGIエージェントの主成分として機能する新しい認知モデルを提案する。
このモデルは、成熟したインテリジェンス状態に導入され、以前のモデルであるDENN、特にAKREMの拡張として、運用モデル(フレーム/クラス)と意志を含む。
このモデルの中核的な仮定は、認知は蓄積された知識を操作することであり、適切な意志のガイダンスである。
また、知識の一部である行動が、成熟した知性状態に先行する進化段階において、意志に沿うことを学習していると仮定する。
さらに、このモデルは、トップダウンとボトムアップの両方のモデル学習、一般化のバース特殊化など、既知のすべての知的側面における双対性原理に基づいている。
さらに、AGI設計には全体論的アプローチが提唱され、再利用性とシンプルさという形で制約や効率性の下での認知が提案される。
最後に、この成熟状態に達するには、統合原理を利用して、幼児から成人への認知的進化を通して記述する。
この認知モデルの最終的な製品は、モデルとインスタンスの動的操作メモリである。
最後に、成熟状態に達する進化段階のいくつかの例と予備的なアイデアを示す。
関連論文リスト
- Exploring Model Kinship for Merging Large Language Models [52.01652098827454]
本稿では,大規模言語モデル間の類似性や関連性の程度であるモデル親和性を紹介する。
モデル統合後の性能向上とモデル親和性の間には,一定の関係があることが判明した。
我々は新しいモデルマージ戦略を提案する。Top-k Greedy Merging with Model Kinship。
論文 参考訳(メタデータ) (2024-10-16T14:29:29Z) - Model Developmental Safety: A Safety-Centric Method and Applications in Vision-Language Models [75.8161094916476]
本稿では,既存の画像分類能力向上のために,事前学習された視覚言語モデル(別名CLIPモデル)の開発方法について検討する。
自律走行とシーン認識データセットにおける視覚知覚能力の向上に関する実験は,提案手法の有効性を実証するものである。
論文 参考訳(メタデータ) (2024-10-04T22:34:58Z) - Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
我々は、最先端の学習ベースアプローチの2つのタイプを広範かつ包括的に調査する。
本稿では,シーケンスベースモデルの優先度と,グラフベースモデルの限定能力について実験的に検証する。
論文 参考訳(メタデータ) (2024-08-14T13:01:30Z) - MGE: A Training-Free and Efficient Model Generation and Enhancement
Scheme [10.48591131837771]
本稿では,MGE(Merning-free and Efficient Model Generation and Enhancement Scheme)を提案する。
モデル生成プロセスにおいて、モデルパラメータの分布とモデルパフォーマンスの2つの側面を考慮する。
実験の結果、生成したモデルは通常の訓練によって得られたモデルに匹敵し、場合によっては優れていることが示された。
論文 参考訳(メタデータ) (2024-02-27T13:12:00Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - Purposeful and Operation-based Cognitive System for AGI [0.0]
本稿では,AGIエージェントの主成分として機能する新しい認知モデルを提案する。
このモデルは成熟した状態で導入され、以前のモデル、特にAKREMの拡張として提供される。
論文 参考訳(メタデータ) (2023-01-31T11:11:38Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
モデルに基づく強化学習における一般的な実践は、エージェントの環境のあらゆる側面をモデル化するモデルを学ぶことである。
このようなモデルは、生涯にわたる強化学習シナリオにおいて、スケーラブルで堅牢な計画を実行するのに特に適していない、と我々は主張する。
我々は,「最小値部分モデル」と呼ぶ,環境の関連する側面のみをモデル化する新しい種類のモデルを提案する。
論文 参考訳(メタデータ) (2023-01-24T16:40:01Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
本稿では,ニューラル生成符号化とホログラフィック連想記憶に基づく認知モデルの実装について述べる。
提案システムは,多様なタスクから継続的に学習し,大規模に人的パフォーマンスをモデル化するエージェントを開発するための基盤となる。
論文 参考訳(メタデータ) (2021-05-15T22:55:23Z) - Knowledge-Guided Dynamic Systems Modeling: A Case Study on Modeling
River Water Quality [8.110949636804774]
実世界の現象をモデル化することは、エコロジーモデリングや財務予測など、多くの科学と工学の取り組みの焦点である。
複雑な動的システムのための正確なモデルの構築は、基盤となるプロセスの理解を改善し、リソース効率に繋がる。
反対の極端に、データ駆動モデリングはデータから直接モデルを学び、広範囲なデータと潜在的に過剰なフィッティングを生成する。
中間的アプローチであるモデルリビジョンに注目し,事前知識とデータを組み合わせることで,両世界のベストを達成する。
論文 参考訳(メタデータ) (2021-03-01T06:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。