ADMUS: A Progressive Question Answering Framework Adaptable to Multiple
Knowledge Sources
- URL: http://arxiv.org/abs/2308.04800v1
- Date: Wed, 9 Aug 2023 08:46:39 GMT
- Title: ADMUS: A Progressive Question Answering Framework Adaptable to Multiple
Knowledge Sources
- Authors: Yirui Zhan, Yanzeng Li, Minhao Zhang, Lei Zou
- Abstract summary: We present ADMUS, a progressive knowledge base question answering framework designed to accommodate a wide variety of datasets.
Our framework supports the seamless integration of new datasets with minimal effort, only requiring creating a dataset-related micro-service at a negligible cost.
- Score: 9.484792817869671
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the introduction of deep learning models, semantic parsingbased
knowledge base question answering (KBQA) systems have achieved high performance
in handling complex questions. However, most existing approaches primarily
focus on enhancing the model's effectiveness on individual benchmark datasets,
disregarding the high costs of adapting the system to disparate datasets in
real-world scenarios (e.g., multi-tenant platform). Therefore, we present
ADMUS, a progressive knowledge base question answering framework designed to
accommodate a wide variety of datasets, including multiple languages, diverse
backbone knowledge bases, and disparate question answering datasets. To
accomplish the purpose, we decouple the architecture of conventional KBQA
systems and propose this dataset-independent framework. Our framework supports
the seamless integration of new datasets with minimal effort, only requiring
creating a dataset-related micro-service at a negligible cost. To enhance the
usability of ADUMS, we design a progressive framework consisting of three
stages, ranges from executing exact queries, generating approximate queries and
retrieving open-domain knowledge referring from large language models. An
online demonstration of ADUMS is available at:
https://answer.gstore.cn/pc/index.html
Related papers
- BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
Large language models (LLMs) have become increasingly pivotal across various domains.
BabelBench is an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution.
Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement.
arXiv Detail & Related papers (2024-10-01T15:11:24Z) - Developing PUGG for Polish: A Modern Approach to KBQA, MRC, and IR Dataset Construction [43.045596895389345]
We introduce a modern, semi-automated approach for creating datasets, encompassing tasks such as KBQA, Machine Reading (MRC), and Information Retrieval (IR)
We provide a comprehensive implementation, insightful findings, detailed statistics, and evaluation of baseline models.
arXiv Detail & Related papers (2024-08-05T09:23:49Z) - Dynamic Few-Shot Learning for Knowledge Graph Question Answering [3.116231004560997]
Large language models present opportunities for innovative Question Answering over Knowledge Graphs (KGQA)
To bridge this gap, solutions have been proposed that rely on fine-tuning or ad-hoc architectures, achieving good results but limited out-of-domain distribution generalization.
In this study, we introduce a novel approach called Dynamic Few-Shot Learning (DFL)
DFL integrates the efficiency of in-context learning and semantic similarity and provides a generally applicable solution for KGQA with state-of-the-art performance.
arXiv Detail & Related papers (2024-07-01T15:59:17Z) - Interactive-KBQA: Multi-Turn Interactions for Knowledge Base Question Answering with Large Language Models [7.399563588835834]
Interactive-KBQA is a framework designed to generate logical forms through direct interaction with knowledge bases (KBs)
Our method achieves competitive results on the WebQuestionsSP, ComplexWebQuestions, KQA Pro, and MetaQA datasets.
arXiv Detail & Related papers (2024-02-23T06:32:18Z) - UNK-VQA: A Dataset and a Probe into the Abstention Ability of Multi-modal Large Models [55.22048505787125]
This paper contributes a comprehensive dataset, called UNK-VQA.
We first augment the existing data via deliberate perturbations on either the image or question.
We then extensively evaluate the zero- and few-shot performance of several emerging multi-modal large models.
arXiv Detail & Related papers (2023-10-17T02:38:09Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
Serving deep learning (DL) models on relational data has become a critical requirement across diverse commercial and scientific domains.
We highlight three pivotal paradigms: The state-of-the-art DL-centric architecture offloads DL computations to dedicated DL frameworks.
The potential UDF-centric architecture encapsulates one or more tensor computations into User Defined Functions (UDFs) within the relational database management system (RDBMS)
arXiv Detail & Related papers (2023-10-07T06:01:35Z) - FlexKBQA: A Flexible LLM-Powered Framework for Few-Shot Knowledge Base
Question Answering [16.88132219032486]
We introduce FlexKBQA to mitigate the burden associated with manual annotation.
We leverage Large Language Models (LLMs) as program translators for addressing the challenges inherent in the few-shot KBQA task.
Specifically, FlexKBQA leverages automated algorithms to sample diverse programs, such as SPARQL queries, from the knowledge base.
We observe that under the few-shot even the more challenging zero-shot scenarios, FlexKBQA achieves impressive results with a few annotations.
arXiv Detail & Related papers (2023-08-23T11:00:36Z) - Chain-of-Skills: A Configurable Model for Open-domain Question Answering [79.8644260578301]
The retrieval model is an indispensable component for real-world knowledge-intensive tasks.
Recent work focuses on customized methods, limiting the model transferability and scalability.
We propose a modular retriever where individual modules correspond to key skills that can be reused across datasets.
arXiv Detail & Related papers (2023-05-04T20:19:39Z) - SYGMA: System for Generalizable Modular Question Answering OverKnowledge
Bases [57.89642289610301]
We present SYGMA, a modular approach facilitating general-izability across multiple knowledge bases and multiple rea-soning types.
We demonstrate effectiveness of our system by evaluating on datasets belonging to two distinct knowledge bases,DBpedia and Wikidata.
arXiv Detail & Related papers (2021-09-28T01:57:56Z) - ClarQ: A large-scale and diverse dataset for Clarification Question
Generation [67.1162903046619]
We devise a novel bootstrapping framework that assists in the creation of a diverse, large-scale dataset of clarification questions based on postcomments extracted from stackexchange.
We quantitatively demonstrate the utility of the newly created dataset by applying it to the downstream task of question-answering.
We release this dataset in order to foster research into the field of clarification question generation with the larger goal of enhancing dialog and question answering systems.
arXiv Detail & Related papers (2020-06-10T17:56:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.