Comparing How a Chatbot References User Utterances from Previous
Chatting Sessions: An Investigation of Users' Privacy Concerns and
Perceptions
- URL: http://arxiv.org/abs/2308.04879v1
- Date: Wed, 9 Aug 2023 11:21:51 GMT
- Title: Comparing How a Chatbot References User Utterances from Previous
Chatting Sessions: An Investigation of Users' Privacy Concerns and
Perceptions
- Authors: Samuel Rhys Cox and Yi-Chieh Lee and Wei Tsang Ooi
- Abstract summary: We investigated the trade-off between remembering and referencing previous conversations and user engagement.
We found that referencing previous utterances does not enhance user engagement or infringe on privacy.
We discuss implications from our findings that can help designers choose an appropriate format to reference previous user utterances.
- Score: 9.205084145168884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chatbots are capable of remembering and referencing previous conversations,
but does this enhance user engagement or infringe on privacy? To explore this
trade-off, we investigated the format of how a chatbot references previous
conversations with a user and its effects on a user's perceptions and privacy
concerns. In a three-week longitudinal between-subjects study, 169 participants
talked about their dental flossing habits to a chatbot that either, (1-None):
did not explicitly reference previous user utterances, (2-Verbatim): referenced
previous utterances verbatim, or (3-Paraphrase): used paraphrases to reference
previous utterances. Participants perceived Verbatim and Paraphrase chatbots as
more intelligent and engaging. However, the Verbatim chatbot also raised
privacy concerns with participants. To gain insights as to why people prefer
certain conditions or had privacy concerns, we conducted semi-structured
interviews with 15 participants. We discuss implications from our findings that
can help designers choose an appropriate format to reference previous user
utterances and inform in the design of longitudinal dialogue scripting.
Related papers
- User Privacy Harms and Risks in Conversational AI: A Proposed Framework [1.8416014644193066]
This study identifies 9 privacy harms and 9 privacy risks in text-based interactions.
The aim is to offer developers, policymakers, and researchers a tool for responsible and secure implementation of conversational AI.
arXiv Detail & Related papers (2024-02-15T05:21:58Z) - ChatGPT for Us: Preserving Data Privacy in ChatGPT via Dialogue Text
Ambiguation to Expand Mental Health Care Delivery [52.73936514734762]
ChatGPT has gained popularity for its ability to generate human-like dialogue.
Data-sensitive domains face challenges in using ChatGPT due to privacy and data-ownership concerns.
We propose a text ambiguation framework that preserves user privacy.
arXiv Detail & Related papers (2023-05-19T02:09:52Z) - MCP: Self-supervised Pre-training for Personalized Chatbots with
Multi-level Contrastive Sampling [18.40883902610959]
We propose a self-supervised learning framework for capturing better representations from users' dialogue history for personalized chatbots.
Specifically, we apply contrastive sampling methods to leverage the supervised signals hidden in user dialog history.
Experimental results on two real-world datasets show a significant improvement in our proposed model MCP compared with the existing methods.
arXiv Detail & Related papers (2022-10-17T05:16:23Z) - Knowledge-Grounded Conversational Data Augmentation with Generative
Conversational Networks [76.11480953550013]
We take a step towards automatically generating conversational data using Generative Conversational Networks.
We evaluate our approach on conversations with and without knowledge on the Topical Chat dataset.
arXiv Detail & Related papers (2022-07-22T22:37:14Z) - Making the case for audience design in conversational AI: Rapport
expectations and language ideologies in a task-oriented chatbot [0.0]
This paper argues that insights into users' language ideologies and their rapport expectations can be used to inform the audience design of the bot's language and interaction patterns.
I will define audience design for conversational AI and discuss how user analyses of interactions and socio-linguistically informed theoretical approaches can be used to support audience design.
arXiv Detail & Related papers (2022-06-21T19:21:30Z) - EmpBot: A T5-based Empathetic Chatbot focusing on Sentiments [75.11753644302385]
Empathetic conversational agents should not only understand what is being discussed, but also acknowledge the implied feelings of the conversation partner.
We propose a method based on a transformer pretrained language model (T5)
We evaluate our model on the EmpatheticDialogues dataset using both automated metrics and human evaluation.
arXiv Detail & Related papers (2021-10-30T19:04:48Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
This paper proposes an innovative framework to train chatbots to possess human-like intentions.
Our framework included a guiding robot and an interlocutor model that plays the role of humans.
We examined our framework using three experimental setups and evaluate the guiding robot with four different metrics to demonstrated flexibility and performance advantages.
arXiv Detail & Related papers (2021-03-30T15:24:37Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - A Neural Topical Expansion Framework for Unstructured Persona-oriented
Dialogue Generation [52.743311026230714]
Persona Exploration and Exploitation (PEE) is able to extend the predefined user persona description with semantically correlated content.
PEE consists of two main modules: persona exploration and persona exploitation.
Our approach outperforms state-of-the-art baselines in terms of both automatic and human evaluations.
arXiv Detail & Related papers (2020-02-06T08:24:33Z) - If I Hear You Correctly: Building and Evaluating Interview Chatbots with
Active Listening Skills [4.395837214164745]
It is challenging to build effective interview chatbots that can handle user free-text responses to open-ended questions.
We are investigating the feasibility and effectiveness of using publicly available, practical AI technologies to build effective interview chatbots.
arXiv Detail & Related papers (2020-02-05T16:52:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.