論文の概要: LLaMA-E: Empowering E-commerce Authoring with Object-Interleaved Instruction Following
- arxiv url: http://arxiv.org/abs/2308.04913v2
- Date: Tue, 11 Jun 2024 02:14:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 01:18:21.068044
- Title: LLaMA-E: Empowering E-commerce Authoring with Object-Interleaved Instruction Following
- Title(参考訳): LLaMA-E: オブジェクトインターリーブインストラクションによるEコマースオーサリングの強化
- Authors: Kaize Shi, Xueyao Sun, Dingxian Wang, Yinlin Fu, Guandong Xu, Qing Li,
- Abstract要約: 本稿では、顧客、販売者、プラットフォームの文脈的嗜好に対処する統合eコマースオーサリングモデルであるLLaMA-Eを提案する。
広告生成,クエリ強化製品タイトル書き換え,製品分類,購入意図の推測,一般的なeコマースQ&Aといったタスクから導かれる命令セットを設計する。
提案したLLaMA-Eモデルは、最先端評価性能を達成し、ゼロショット実用的な応用において優位性を示す。
- 参考スコア(独自算出の注目度): 16.800545001782037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: E-commerce authoring entails creating engaging, diverse, and targeted content to enhance preference elicitation and retrieval experience. While Large Language Models (LLMs) have revolutionized content generation, they often fall short in e-commerce applications due to their limited memorization of domain-specific features. This paper proposes LLaMA-E, the unified e-commerce authoring models that address the contextual preferences of customers, sellers, and platforms, the essential objects in e-commerce operation. We design the instruction set derived from tasks of ads generation, query-enhanced product title rewriting, product classification, purchase intent speculation, and general e-commerce Q&A. The instruction formulation ensures the interleaved cover of the presented and required object features, allowing the alignment of base models to parameterise e-commerce knowledge comprehensively. The proposed LLaMA-E models achieve state-of-the-art evaluation performance and exhibit the advantage in zero-shot practical applications. To our knowledge, this is the first LLM tailored to empower authoring applications with comprehensive scenario understanding by integrating features focused on participated objects.
- Abstract(参考訳): Eコマースのオーサリングは、嗜好の誘惑と検索体験を強化するために、エンゲージメント、多様性、ターゲットとなるコンテンツを作成することを必要とする。
LLM(Large Language Models)はコンテンツ生成に革命をもたらしたが、ドメイン固有の機能の記憶が限られているため、eコマースアプリケーションでは不足することが多い。
本稿では、顧客、販売者、プラットフォームの文脈的嗜好に対処する統合eコマースオーサリングモデルであるLLaMA-Eを提案する。
広告生成,クエリ強化製品タイトル書き換え,製品分類,購入意図の推測,一般的なeコマースQ&Aといったタスクから導かれる命令セットを設計する。
命令の定式化により、提示および要求対象機能のインターリーブ被覆が保証され、ベースモデルのアライメントにより、Eコマースの知識を包括的にパラメータ化することができる。
提案したLLaMA-Eモデルは、最先端評価性能を達成し、ゼロショット実用的な応用において優位性を示す。
私たちの知る限り、このLLMは、参加オブジェクトに焦点を絞った機能を統合することで、包括的なシナリオ理解を備えたオーサリングアプリケーションを強化するために作られた最初のLLMです。
関連論文リスト
- IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce [50.41970803871156]
本稿では,eコマースにおけるLMの購入意図の理解を評価するためのベンチマークであるIntentionQAを提案する。
インテンションQAは、自動化パイプラインを使用して構築された3つの困難レベルにわたる4,360の慎重に計算された問題で構成されている。
人間の評価は、我々のベンチマークの高品質で低い偽陰性率を示す。
論文 参考訳(メタデータ) (2024-06-14T16:51:21Z) - A survey on fairness of large language models in e-commerce: progress, application, and challenge [8.746342211863332]
本調査では,eコマースにおける大規模言語モデル(LLM)の公平性について検討する。
進捗、アプリケーション、そして彼らが直面している課題を調べます。
この論文は、eコマースにおける公正性の課題を批判的に扱い、トレーニングデータとアルゴリズムのバイアスが不公平な結果をもたらすことを強調している。
論文 参考訳(メタデータ) (2024-05-15T23:25:19Z) - Generating Attractive and Authentic Copywriting from Customer Reviews [7.159225692930055]
本稿では,顧客のレビューに基づいて,商品の実践的体験を手軽に提供し,コピーライティングを生成することを提案する。
そこで我々は,強化学習により強化されたシーケンス・ツー・シーケンス(Sequence-to-Sequence)フレームワークを開発した。
我々のフレームワークは、LLaMA-2-chat-7BやGPT-3.5など、既存のベースラインやゼロショットの大規模言語モデルよりも優れています。
論文 参考訳(メタデータ) (2024-04-22T06:33:28Z) - eCeLLM: Generalizing Large Language Models for E-commerce from
Large-scale, High-quality Instruction Data [13.835166230097231]
電子商取引のための,最初のオープンソース,大規模,高品質なベンチマークインストラクションデータセットであるECInstructを構築した。
我々は,eコマース LLM のシリーズである eCeLLM を開発した。
eCeLLMは、目に見えない製品や目に見えない命令を含む、ドメイン外の設定に優れた一般化性を示す。
論文 参考訳(メタデータ) (2024-02-13T22:26:24Z) - EcomGPT-CT: Continual Pre-training of E-commerce Large Language Models
with Semi-structured Data [67.8302955948861]
大規模コーパスで事前訓練された大規模言語モデル(LLM)は、様々なNLPタスクにおいて顕著な性能を示した。
これらのモデルを特定のドメインに適用しても、ドメイン知識の欠如など、大きな課題が生じる。
我々は、Eコマースドメインを例として用いたLLMのドメイン固有の継続事前学習に焦点を当てた。
論文 参考訳(メタデータ) (2023-12-25T11:31:47Z) - Online Advertisements with LLMs: Opportunities and Challenges [51.96140910798771]
本稿では,オンライン広告システムにおけるLarge Language Models(LLM)の活用の可能性について検討する。
プライバシー、レイテンシ、信頼性、そしてそのようなシステムが満たさなければならないユーザや広告主の満足度など、基本的な要件を探求します。
論文 参考訳(メタデータ) (2023-11-11T02:13:32Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - EcomGPT: Instruction-tuning Large Language Models with Chain-of-Task
Tasks for E-commerce [68.72104414369635]
本稿では,約250万の命令データを持つ電子商取引指導データセットであるEcomInstructを提案する。
EcomGPTは、Eコマースタスクにおけるクロスデータセット/タスクの一般化という観点で、ChatGPTを上回っている。
論文 参考訳(メタデータ) (2023-08-14T06:49:53Z) - Learning Instance-Level Representation for Large-Scale Multi-Modal
Pretraining in E-commerce [35.73830796500975]
本研究では, ECLIPと呼ばれるインスタンス中心のマルチモーダル事前学習パラダイムを提案する。
高価な手作業によるアノテーションに頼ることなく、モデルが望ましい製品インスタンスに集中できるようにするために、2つの特別な設定されたプレテキストタスクが提案されている。
ECLIPは、さまざまな下流タスクにおいて既存の手法をはるかに上回り、現実世界のEコマースアプリケーションへの強力な転送可能性を示している。
論文 参考訳(メタデータ) (2023-04-06T04:14:41Z) - Automatic Controllable Product Copywriting for E-Commerce [58.97059802658354]
我々は、JD.comのeコマースレコメンデーションプラットフォームに、Eコマースのプレフィックスベースのコントロール可能なコピーライティング生成をデプロイする。
提案するECCCGの有効性を検証する実験を行った。
本稿では,リアルタイムのJD.com電子商取引レコメンデーションプラットフォームに,ECCCGと連携するデプロイアーキテクチャを導入する。
論文 参考訳(メタデータ) (2022-06-21T04:18:52Z) - K-PLUG: Knowledge-injected Pre-trained Language Model for Natural
Language Understanding and Generation in E-Commerce [38.9878151656255]
K-PLUGは、エンコーダデコーダトランスフォーマーに基づく知識インジェクション型プリトレーニング言語モデルです。
ドメイン特化知識の学習を定式化する5つの自己指導型事前学習目標を提案する。
論文 参考訳(メタデータ) (2021-04-14T16:37:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。