論文の概要: A survey on fairness of large language models in e-commerce: progress, application, and challenge
- arxiv url: http://arxiv.org/abs/2405.13025v2
- Date: Fri, 21 Jun 2024 21:26:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 00:43:06.866852
- Title: A survey on fairness of large language models in e-commerce: progress, application, and challenge
- Title(参考訳): 電子商取引における大規模言語モデルの公正性に関する調査--進展、応用、挑戦
- Authors: Qingyang Ren, Zilin Jiang, Jinghan Cao, Sijia Li, Chiqu Li, Yiyang Liu, Shuning Huo, Tiange He, Yuan Chen,
- Abstract要約: 本調査では,eコマースにおける大規模言語モデル(LLM)の公平性について検討する。
進捗、アプリケーション、そして彼らが直面している課題を調べます。
この論文は、eコマースにおける公正性の課題を批判的に扱い、トレーニングデータとアルゴリズムのバイアスが不公平な結果をもたらすことを強調している。
- 参考スコア(独自算出の注目度): 8.746342211863332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This survey explores the fairness of large language models (LLMs) in e-commerce, examining their progress, applications, and the challenges they face. LLMs have become pivotal in the e-commerce domain, offering innovative solutions and enhancing customer experiences. This work presents a comprehensive survey on the applications and challenges of LLMs in e-commerce. The paper begins by introducing the key principles underlying the use of LLMs in e-commerce, detailing the processes of pretraining, fine-tuning, and prompting that tailor these models to specific needs. It then explores the varied applications of LLMs in e-commerce, including product reviews, where they synthesize and analyze customer feedback; product recommendations, where they leverage consumer data to suggest relevant items; product information translation, enhancing global accessibility; and product question and answer sections, where they automate customer support. The paper critically addresses the fairness challenges in e-commerce, highlighting how biases in training data and algorithms can lead to unfair outcomes, such as reinforcing stereotypes or discriminating against certain groups. These issues not only undermine consumer trust, but also raise ethical and legal concerns. Finally, the work outlines future research directions, emphasizing the need for more equitable and transparent LLMs in e-commerce. It advocates for ongoing efforts to mitigate biases and improve the fairness of these systems, ensuring they serve diverse global markets effectively and ethically. Through this comprehensive analysis, the survey provides a holistic view of the current landscape of LLMs in e-commerce, offering insights into their potential and limitations, and guiding future endeavors in creating fairer and more inclusive e-commerce environments.
- Abstract(参考訳): 本調査では,eコマースにおける大規模言語モデル(LLM)の公正性について,その進捗状況やアプリケーション,直面している課題について検討する。
LLMは、革新的なソリューションを提供し、顧客エクスペリエンスを向上させることで、Eコマース領域において重要な存在になっています。
本研究は,電子商取引におけるLCMの応用と課題に関する総合的な調査である。
論文は、電子商取引におけるLLMの使用の基礎となる重要な原則の導入から始まり、事前トレーニング、微調整のプロセスを詳述し、これらのモデルを特定のニーズに合わせるよう促す。
次に、製品レビュー、顧客のフィードバックを合成し分析する製品レコメンデーション、消費者データを活用して関連する項目を提案する製品情報翻訳、グローバルアクセシビリティの向上、顧客サポートを自動化する製品質問と回答セクションなど、電子商取引におけるLCMのさまざまな応用について検討する。
この論文は、eコマースにおける公正性の課題を批判的に扱い、トレーニングデータやアルゴリズムのバイアスが、ステレオタイプを強化したり、特定のグループを差別したりといった不公平な結果をもたらす可能性があることを強調している。
これらの問題は消費者の信頼を損なうだけでなく、倫理的および法的懸念も引き起こす。
最後に、この研究は今後の研究の方向性を概説し、電子商取引におけるより公平で透明なLCMの必要性を強調している。
偏見を緩和し、これらのシステムの公正性を向上し、多様なグローバル市場を効果的かつ倫理的に提供するよう継続的な努力を提唱している。
この包括的な分析を通じて、この調査は、eコマースにおけるLLMの現在の状況の全体像を提供し、その可能性と限界についての洞察を提供し、より公平で包括的なeコマース環境を構築するための将来の取り組みを導く。
関連論文リスト
- Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - EcomEdit: An Automated E-commerce Knowledge Editing Framework for Enhanced Product and Purchase Intention Understanding [42.41707796705922]
知識編集(KE)は、大規模言語モデル(LLM)における事実情報の修正と更新を目標とし、計算コストのかかる微調整なしに精度と関連性を保証する。
ECOMEDITは、Eコマース関連の知識とタスクに適した、Eコマースの知識自動編集フレームワークである。
論文 参考訳(メタデータ) (2024-10-18T08:31:22Z) - Information Discovery in e-Commerce [97.71958017283593]
情報検索は、特に商品やサービスとの接続において、eコマースにおいて自然な役割を担っている。
電子商取引サイトの人気が高まり、電子商取引における情報発見の研究が活発な研究分野となっている。
電子商取引における情報発見手法は主に、電子商取引検索とレコメンデーションシステムの有効性の向上に重点を置いている。
論文 参考訳(メタデータ) (2024-10-08T07:41:01Z) - IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce [71.37481473399559]
本稿では,eコマースにおけるLMの購入意図の理解を評価するためのベンチマークであるIntentionQAを提案する。
インテンションQAは、自動化パイプラインを使用して構築された3つの困難レベルにわたる4,360の慎重に計算された問題で構成されている。
人間の評価は、我々のベンチマークの高品質で低い偽陰性率を示す。
論文 参考訳(メタデータ) (2024-06-14T16:51:21Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
大規模言語モデル(LLM)は、言語理解および生成タスクにおいて顕著なパフォーマンスを達成した。
ビジネスプロセスにおけるLCMの有用性と準備性について概説する。
論文 参考訳(メタデータ) (2024-06-09T02:36:00Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Leveraging Large Language Models for Enhanced Product Descriptions in
eCommerce [6.318353155416729]
本稿では,LAMA 2.0 7B言語モデルを用いた製品記述生成の自動化手法を提案する。
私たちはこのモデルを、最大のeコマースプラットフォームの1つであるWalmartの真正な製品記述のデータセットでトレーニングします。
以上の結果から,システムはスケーラブルであるだけでなく,製品記述作成に関わる人的負担を大幅に削減することが明らかとなった。
論文 参考訳(メタデータ) (2023-10-24T00:55:14Z) - Challenges and Contributing Factors in the Utilization of Large Language
Models (LLMs) [10.039589841455136]
本稿では,大規模言語モデル (LLM) がニッチ分野における専門的な質問に対して正確な回答を提供するのに苦慮する領域特異性の問題について考察する。
トレーニングデータを多様化し、きめ細かいモデルを作成し、透明性と解釈可能性を高め、倫理と公正なトレーニングを取り入れることが推奨されている。
論文 参考訳(メタデータ) (2023-10-20T08:13:36Z) - LLaMA-E: Empowering E-commerce Authoring with Object-Interleaved Instruction Following [16.800545001782037]
本稿では、顧客、販売者、プラットフォームの文脈的嗜好に対処する統合eコマースオーサリングモデルであるLLaMA-Eを提案する。
広告生成,クエリ強化製品タイトル書き換え,製品分類,購入意図の推測,一般的なeコマースQ&Aといったタスクから導かれる命令セットを設計する。
提案したLLaMA-Eモデルは、最先端評価性能を達成し、ゼロショット実用的な応用において優位性を示す。
論文 参考訳(メタデータ) (2023-08-09T12:26:37Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
大きな言語モデル(LLM)は、印象的な汎用知性と人間のような能力を示している。
我々は,実世界のレコメンデータシステムにおけるパイプライン全体の観点から,この研究の方向性を包括的に調査する。
論文 参考訳(メタデータ) (2023-06-09T11:31:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。