Improved Cryo-EM Pose Estimation and 3D Classification through Latent-Space Disentanglement
- URL: http://arxiv.org/abs/2308.04956v3
- Date: Tue, 23 Apr 2024 02:51:28 GMT
- Title: Improved Cryo-EM Pose Estimation and 3D Classification through Latent-Space Disentanglement
- Authors: Weijie Chen, Yuhang Wang, Lin Yao,
- Abstract summary: We propose a self-supervised variational autoencoder architecture called "HetACUMN" based on amortized inference.
Results on simulated datasets show that HetACUMN generated more accurate conformational classifications than other amortized or non-amortized methods.
- Score: 14.973360669658561
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Due to the extremely low signal-to-noise ratio (SNR) and unknown poses (projection angles and image shifts) in cryo-electron microscopy (cryo-EM) experiments, reconstructing 3D volumes from 2D images is very challenging. In addition to these challenges, heterogeneous cryo-EM reconstruction requires conformational classification. In popular cryo-EM reconstruction algorithms, poses and conformation classification labels must be predicted for every input cryo-EM image, which can be computationally costly for large datasets. An emerging class of methods adopted the amortized inference approach. In these methods, only a subset of the input dataset is needed to train neural networks for the estimation of poses and conformations. Once trained, these neural networks can make pose/conformation predictions and 3D reconstructions at low cost for the entire dataset during inference. Unfortunately, when facing heterogeneous reconstruction tasks, it is hard for current amortized-inference-based methods to effectively estimate the conformational distribution and poses from entangled latent variables. Here, we propose a self-supervised variational autoencoder architecture called "HetACUMN" based on amortized inference. We employed an auxiliary conditional pose prediction task by inverting the order of encoder-decoder to explicitly enforce the disentanglement of conformation and pose predictions. Results on simulated datasets show that HetACUMN generated more accurate conformational classifications than other amortized or non-amortized methods. Furthermore, we show that HetACUMN is capable of performing heterogeneous 3D reconstructions of a real experimental dataset.
Related papers
- 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
Existing methods learn 3D rotations parametrized in the spatial domain using angles or quaternions.
We propose a frequency-domain approach that directly predicts Wigner-D coefficients for 3D rotation regression.
Our method achieves state-of-the-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+.
arXiv Detail & Related papers (2024-11-01T12:50:38Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - SeisFusion: Constrained Diffusion Model with Input Guidance for 3D Seismic Data Interpolation and Reconstruction [26.02191880837226]
We propose a novel diffusion model reconstruction framework tailored for 3D seismic data.
We introduce a 3D neural network architecture into the diffusion model, successfully extending the 2D diffusion model to 3D space.
Our method exhibits superior reconstruction accuracy when applied to both field datasets and synthetic datasets.
arXiv Detail & Related papers (2024-03-18T05:10:13Z) - CryoFormer: Continuous Heterogeneous Cryo-EM Reconstruction using
Transformer-based Neural Representations [49.49939711956354]
Cryo-electron microscopy (cryo-EM) allows for the high-resolution reconstruction of 3D structures of proteins and other biomolecules.
It is still challenging to reconstruct the continuous motions of 3D structures from noisy and randomly oriented 2D cryo-EM images.
We propose CryoFormer, a new approach for continuous heterogeneous cryo-EM reconstruction.
arXiv Detail & Related papers (2023-03-28T18:59:17Z) - Amortized Inference for Heterogeneous Reconstruction in Cryo-EM [36.911133113707045]
cryo-electron microscopy (cryo-EM) provides insights into the dynamics of proteins and other building blocks of life.
The algorithmic challenge of jointly estimating the poses, 3D structure, and conformational heterogeneity of a biomolecule remains unsolved.
Our method, cryoFIRE, performs ab initio heterogeneous reconstruction with unknown poses in an amortized framework.
We show that our method can provide one order of magnitude speedup on datasets containing millions of images without any loss of accuracy.
arXiv Detail & Related papers (2022-10-13T22:06:38Z) - Self-supervised Human Mesh Recovery with Cross-Representation Alignment [20.69546341109787]
Self-supervised human mesh recovery methods have poor generalizability due to limited availability and diversity of 3D-annotated benchmark datasets.
We propose cross-representation alignment utilizing the complementary information from the robust but sparse representation (2D keypoints)
This adaptive cross-representation alignment explicitly learns from the deviations and captures complementary information: richness from sparse representation and robustness from dense representation.
arXiv Detail & Related papers (2022-09-10T04:47:20Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
The intuition of this work is to perceive the geometric inconsistency between the given meshes with the powerful self-attention mechanism.
We propose a novel geometry-contrastive Transformer that has an efficient 3D structured perceiving ability to the global geometric inconsistencies.
We present a latent isometric regularization module together with a novel semi-synthesized dataset for the cross-dataset 3D pose transfer task.
arXiv Detail & Related papers (2021-12-14T13:14:24Z) - NuSPAN: A Proximal Average Network for Nonuniform Sparse Model --
Application to Seismic Reflectivity Inversion [23.080395291046408]
We solve the problem of proximal deconvolution in the context of high-resolution recovery of seismic data.
We employ a combination of convex and non-uniform signalizers.
The resulting sparse network architecture can be acquired in a data-driven fashion.
arXiv Detail & Related papers (2021-05-01T04:33:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.