Under-Sampled High-Dimensional Data Recovery via Symbiotic Multi-Prior Tensor Reconstruction
- URL: http://arxiv.org/abs/2504.05992v1
- Date: Tue, 08 Apr 2025 12:55:18 GMT
- Title: Under-Sampled High-Dimensional Data Recovery via Symbiotic Multi-Prior Tensor Reconstruction
- Authors: Jie Yang, Chang Su, Yuhan Zhang, Jianjun Zhu, Jianli Wang,
- Abstract summary: This work proposes a tensor reconstruction method integrating multiple priors to exploit the inherent structure of the data.<n>Specifically, the method combines learnable decomposition to enforce low-rank constraints of the reconstructed data, a pre-trained convolutional neural network for smoothing and denoising, and block-matching and 3D filtering regularization.<n>Experiments on color images, hyperspectral images, and grayscale videos datasets demonstrate the superiority of our method in extreme cases.
- Score: 10.666965599523754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement of sensing technology has driven the widespread application of high-dimensional data. However, issues such as missing entries during acquisition and transmission negatively impact the accuracy of subsequent tasks. Tensor reconstruction aims to recover the underlying complete data from under-sampled observed data by exploring prior information in high-dimensional data. However, due to insufficient exploration, reconstruction methods still face challenges when sampling rate is extremely low. This work proposes a tensor reconstruction method integrating multiple priors to comprehensively exploit the inherent structure of the data. Specifically, the method combines learnable tensor decomposition to enforce low-rank constraints of the reconstructed data, a pre-trained convolutional neural network for smoothing and denoising, and block-matching and 3D filtering regularization to enhance the non-local similarity in the reconstructed data. An alternating direction method of the multipliers algorithm is designed to decompose the resulting optimization problem into three subproblems for efficient resolution. Extensive experiments on color images, hyperspectral images, and grayscale videos datasets demonstrate the superiority of our method in extreme cases as compared with state-of-the-art methods.
Related papers
- Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction [48.30341580103962]
We propose a novel re-visible dual-domain self-supervised deep unfolding network to address these issues.<n>We design a deep unfolding network based on Chambolle and Pock Proximal Point Algorithm (DUN-CP-PPA) to achieve end-to-end reconstruction.<n> Experiments conducted on the fastMRI and IXI datasets demonstrate that our method significantly outperforms state-of-the-art approaches in terms of reconstruction performance.
arXiv Detail & Related papers (2025-01-07T12:29:32Z) - Deep Compressed Learning for 3D Seismic Inversion [5.926203312586109]
We consider the problem of 3D seismic inversion from pre-stack data using a very small number of seismic sources.
The proposed solution is based on a combination of compressed-sensing and machine learning frameworks.
arXiv Detail & Related papers (2023-10-31T19:34:26Z) - AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation [51.143540967290114]
We propose a method that unlocks a wide range of previously-infeasible geometric augmentations for unsupervised depth computation and estimation.
This is achieved by reversing, or undo''-ing, geometric transformations to the coordinates of the output depth, warping the depth map back to the original reference frame.
arXiv Detail & Related papers (2023-10-15T05:15:45Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - Improved Cryo-EM Pose Estimation and 3D Classification through Latent-Space Disentanglement [14.973360669658561]
We propose a self-supervised variational autoencoder architecture called "HetACUMN" based on amortized inference.
Results on simulated datasets show that HetACUMN generated more accurate conformational classifications than other amortized or non-amortized methods.
arXiv Detail & Related papers (2023-08-09T13:41:30Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - WNet: A data-driven dual-domain denoising model for sparse-view computed
tomography with a trainable reconstruction layer [3.832032989515628]
We propose WNet, a data-driven dual-domain denoising model which contains a trainable reconstruction layer for sparse-view artifact denoising.
We train and test our network on two clinically relevant datasets and we compare the obtained results with three different types of sparse-view CT denoising and reconstruction algorithms.
arXiv Detail & Related papers (2022-07-01T13:17:01Z) - 3D Dense Geometry-Guided Facial Expression Synthesis by Adversarial
Learning [54.24887282693925]
We propose a novel framework to exploit 3D dense (depth and surface normals) information for expression manipulation.
We use an off-the-shelf state-of-the-art 3D reconstruction model to estimate the depth and create a large-scale RGB-Depth dataset.
Our experiments demonstrate that the proposed method outperforms the competitive baseline and existing arts by a large margin.
arXiv Detail & Related papers (2020-09-30T17:12:35Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.