論文の概要: Adversarial ModSecurity: Countering Adversarial SQL Injections with
Robust Machine Learning
- arxiv url: http://arxiv.org/abs/2308.04964v1
- Date: Wed, 9 Aug 2023 13:58:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-10 13:24:01.288470
- Title: Adversarial ModSecurity: Countering Adversarial SQL Injections with
Robust Machine Learning
- Title(参考訳): Adversarial ModSecurity:ロバスト機械学習によるSQLインジェクション対策
- Authors: Biagio Montaruli, Luca Demetrio, Andrea Valenza, Battista Biggio, Luca
Compagna, Davide Balzarotti, Davide Ariu, Luca Piras
- Abstract要約: ModSecurityは、標準のオープンソースWebアプリケーションファイアウォール(WAF)として広く認識されている。
我々は、コアルールセット(CRS)ルールを入力として使用する、AdvModSecという堅牢な機械学習モデルを開発した。
我々の実験によると、AdvModSecは、保護されたWebサービスに向けられたトラフィックに基づいて訓練されており、検出と偽陽性率のトレードオフをより良くする。
- 参考スコア(独自算出の注目度): 16.562530430100235
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: ModSecurity is widely recognized as the standard open-source Web Application
Firewall (WAF), maintained by the OWASP Foundation. It detects malicious
requests by matching them against the Core Rule Set, identifying well-known
attack patterns. Each rule in the CRS is manually assigned a weight, based on
the severity of the corresponding attack, and a request is detected as
malicious if the sum of the weights of the firing rules exceeds a given
threshold. In this work, we show that this simple strategy is largely
ineffective for detecting SQL injection (SQLi) attacks, as it tends to block
many legitimate requests, while also being vulnerable to adversarial SQLi
attacks, i.e., attacks intentionally manipulated to evade detection. To
overcome these issues, we design a robust machine learning model, named
AdvModSec, which uses the CRS rules as input features, and it is trained to
detect adversarial SQLi attacks. Our experiments show that AdvModSec, being
trained on the traffic directed towards the protected web services, achieves a
better trade-off between detection and false positive rates, improving the
detection rate of the vanilla version of ModSecurity with CRS by 21%. Moreover,
our approach is able to improve its adversarial robustness against adversarial
SQLi attacks by 42%, thereby taking a step forward towards building more robust
and trustworthy WAFs.
- Abstract(参考訳): ModSecurityはOWASP Foundationによってメンテナンスされている標準のオープンソースWeb Application Firewall(WAF)として広く認識されている。
悪質なリクエストをCore Rule Setにマッチさせて検出し、よく知られた攻撃パターンを特定する。
CRSの各ルールは、対応する攻撃の重大度に基づいて、手動で重みを割り当て、発射ルールの重みの合計が所定のしきい値を超えた場合、要求を悪意として検出する。
本研究では、この単純な戦略がSQLインジェクション(SQLi)攻撃の検出にはほとんど効果がないことを示す。
これらの問題を克服するために、我々は、CRSルールを入力機能として使用するAdvModSecという堅牢な機械学習モデルを設計し、敵SQLi攻撃を検出するように訓練する。
実験の結果,保護されたWebサービスへのトラフィックをトレーニングしたAdvModSecは,検出と偽陽性率のトレードオフを向上し,CRSによるModSecurityのバニラバージョンの検出率を21%向上させることができた。
さらに,我々のアプローチは,敵のSQLi攻撃に対する敵の堅牢性を42%向上させることで,より堅牢で信頼性の高いWAFの構築を進めることができる。
関連論文リスト
- Enhancing SQL Injection Detection and Prevention Using Generative Models [4.424836140281847]
本稿では,SQLiの検出・防止機構を強化するために生成モデルを活用する革新的な手法を提案する。
変分オートエンコーダ(VAE)、条件付きワッサースタインGAN、グラディエントペナルティ(CWGAN-GP)、U-Netを組み込むことで、機械学習モデルのトレーニングデータセットを増強するために合成sqlクエリが生成される。
論文 参考訳(メタデータ) (2025-02-07T09:43:43Z) - Red Pill and Blue Pill: Controllable Website Fingerprinting Defense via Dynamic Backdoor Learning [93.44927301021688]
Webサイト指紋(WF)攻撃は、訪問するWebページを特定するために、ユーザーのコミュニケーションを秘密裏に監視する。
既存のWFディフェンスは、ユニークなトラフィックパターンを乱すことで攻撃者の精度を低下させようとする。
バックドア学習に基づく新しい防衛視点である制御可能なWebサイトフィンガープリントディフェンス(CWFD)を紹介した。
論文 参考訳(メタデータ) (2024-12-16T06:12:56Z) - Evaluating and Improving the Robustness of Security Attack Detectors Generated by LLMs [6.936401700600395]
大規模言語モデル(LLM)は、セキュリティ要件を実装するアタック検出器などの関数を生成するために、ソフトウェア開発でますます使われている。
これは、LLMが既存の攻撃に関する知識を欠いていることと、生成されたコードが実際の使用シナリオで評価されていないことによる可能性が高い。
本稿では,LLMパイプラインにRAG(Retrieval Augmented Generation)とSelf-Rankingを統合した新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-27T10:48:37Z) - AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
CLIP画像エンコーダを微調整し、2つの中間対向クエリに対して同様の埋め込みを抽出するために、ACPT(Adversarial Contrastive Prompt Tuning)を提案する。
我々は,ACPTが7つの最先端クエリベースの攻撃を検出できることを示す。
また,ACPTは3種類のアダプティブアタックに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2024-08-04T09:53:50Z) - ModSec-Learn: Boosting ModSecurity with Machine Learning [14.392409275321528]
ModSecurityは、標準のオープンソースWebアプリケーションファイアウォール(WAF)として広く認識されている。
コアルールセット(CRS)ルールを入力として使用する機械学習モデルを提案する。
ModSec-Learnは、予測にそれぞれのCRSルールのコントリビューションをチューニングできるため、Webアプリケーションに対する重大度レベルを保護できる。
論文 参考訳(メタデータ) (2024-06-19T13:32:47Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
我々は、VisualWebArena上に現実的な脅威モデルを用いて、200の敵タスクと評価スクリプトを手動で作成する。
我々は,クロボックスフロンティアLMを用いた最新のエージェントを,リフレクションやツリーサーチを行うエージェントを含む,壊すことに成功している。
AREを使用して、新しいコンポーネントの追加に伴うロバスト性の変化を厳格に評価しています。
論文 参考訳(メタデータ) (2024-06-18T17:32:48Z) - EmInspector: Combating Backdoor Attacks in Federated Self-Supervised Learning Through Embedding Inspection [53.25863925815954]
フェデレートされた自己教師付き学習(FSSL)は、クライアントの膨大な量の未ラベルデータの利用を可能にする、有望なパラダイムとして登場した。
FSSLはアドバンテージを提供するが、バックドア攻撃に対する感受性は調査されていない。
ローカルモデルの埋め込み空間を検査し,悪意のあるクライアントを検知する埋め込み検査器(EmInspector)を提案する。
論文 参考訳(メタデータ) (2024-05-21T06:14:49Z) - FLCert: Provably Secure Federated Learning against Poisoning Attacks [67.8846134295194]
FLCertは、有毒な攻撃に対して確実に安全であるアンサンブル・フェデレート学習フレームワークである。
実験の結果,テスト入力に対するFLCertで予測されたラベルは,有意な数の悪意のあるクライアントによって影響を受けないことが判明した。
論文 参考訳(メタデータ) (2022-10-02T17:50:04Z) - An Adversarial Attack Analysis on Malicious Advertisement URL Detection
Framework [22.259444589459513]
悪意のある広告URLは、サイバー攻撃の源泉であるため、セキュリティ上のリスクをもたらす。
既存の悪意のあるURL検出技術は制限されており、見えない機能やテストデータの一般化を扱うことができる。
本研究では,新しい語彙・ウェブスクラップ機能群を抽出し,機械学習技術を用いて不正広告URL検出システムを構築する。
論文 参考訳(メタデータ) (2022-04-27T20:06:22Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
ディープラーニングの時代、ユーザは、サードパーティの機械学習ツールを使用して、ディープニューラルネットワーク(DNN)分類器をトレーニングすることが多い。
情報埋め込み攻撃では、攻撃者は悪意のあるサードパーティの機械学習ツールを提供する。
本研究では,一般的なポストプロセッシング手法に対して検証可能で堅牢な情報埋め込み攻撃を設計することを目的とする。
論文 参考訳(メタデータ) (2020-10-26T17:42:42Z) - Learning to Detect Malicious Clients for Robust Federated Learning [20.5238037608738]
フェデレートされた学習システムは悪意のあるクライアントからの攻撃に弱い。
我々は、中央サーバが悪意あるモデル更新を検出して削除することを学ぶ、堅牢なフェデレーション学習のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-01T14:09:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。