論文の概要: Confidence-driven Sampling for Backdoor Attacks
- arxiv url: http://arxiv.org/abs/2310.05263v1
- Date: Sun, 8 Oct 2023 18:57:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 02:52:40.570189
- Title: Confidence-driven Sampling for Backdoor Attacks
- Title(参考訳): バックドアアタックに対する信頼性駆動サンプリング
- Authors: Pengfei He, Han Xu, Yue Xing, Jie Ren, Yingqian Cui, Shenglai Zeng, Jiliang Tang, Makoto Yamada, Mohammad Sabokrou,
- Abstract要約: バックドア攻撃は、悪質なトリガをDNNモデルに過剰に挿入することを目的としており、テストシナリオ中に不正な制御を許可している。
既存の方法では防衛戦略に対する堅牢性が欠如しており、主に無作為な試薬を無作為に選別しながら、引き金の盗難を強化することに重点を置いている。
信頼性スコアの低いサンプルを選別し、これらの攻撃を識別・対処する上で、守備側の課題を著しく増大させる。
- 参考スコア(独自算出の注目度): 49.72680157684523
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backdoor attacks aim to surreptitiously insert malicious triggers into DNN models, granting unauthorized control during testing scenarios. Existing methods lack robustness against defense strategies and predominantly focus on enhancing trigger stealthiness while randomly selecting poisoned samples. Our research highlights the overlooked drawbacks of random sampling, which make that attack detectable and defensible. The core idea of this paper is to strategically poison samples near the model's decision boundary and increase defense difficulty. We introduce a straightforward yet highly effective sampling methodology that leverages confidence scores. Specifically, it selects samples with lower confidence scores, significantly increasing the challenge for defenders in identifying and countering these attacks. Importantly, our method operates independently of existing trigger designs, providing versatility and compatibility with various backdoor attack techniques. We substantiate the effectiveness of our approach through a comprehensive set of empirical experiments, demonstrating its potential to significantly enhance resilience against backdoor attacks in DNNs.
- Abstract(参考訳): バックドア攻撃は、悪質なトリガをDNNモデルに過剰に挿入することを目的としており、テストシナリオ中に不正な制御を許可している。
既存の方法では防衛戦略に対する堅牢性が欠如しており、主に無作為な試薬を無作為に選別しながら、引き金の盗難を強化することに重点を置いている。
我々の研究は、ランダムサンプリングの見落とされがちな欠点を強調し、攻撃を検知し、防御できるようにする。
本論文の中核となる考え方は, モデル決定境界付近の試料を戦略的に毒殺し, 防御難度を高めることである。
信頼性スコアを生かした,単純かつ高効率なサンプリング手法を提案する。
具体的には、信頼度が低いサンプルを選択し、これらの攻撃を特定して対処する際のディフェンダーの課題を著しく増加させる。
提案手法は既存のトリガ設計とは独立して動作し,多様なバックドア攻撃手法との汎用性と互換性を提供する。
我々は,DNNのバックドア攻撃に対するレジリエンスを著しく向上させる可能性を実証し,包括的実験を通じてアプローチの有効性を実証する。
関連論文リスト
- Reliable Poisoned Sample Detection against Backdoor Attacks Enhanced by Sharpness Aware Minimization [38.957943962546864]
我々は,バニラ学習アルゴリズムではなく,シャープネス・アウェア最小化(SAM)アルゴリズムを用いて1つのモデルを訓練することを提案する。
いくつかのベンチマークデータセットに対する大規模な実験は、弱いバックドア攻撃と強いバックドア攻撃の両方に対して提案手法の信頼性の高い検出性能を示す。
論文 参考訳(メタデータ) (2024-11-18T12:35:08Z) - DMGNN: Detecting and Mitigating Backdoor Attacks in Graph Neural Networks [30.766013737094532]
我々は,DMGNNを,アウト・オブ・ディストリビューション(OOD)およびイン・ディストリビューション(ID)グラフバックドア攻撃に対して提案する。
DMGNNは、偽説明に基づいてラベル遷移を予測することによって、隠されたIDとOODトリガを容易に識別できる。
DMGNNは最新技術(SOTA)防衛法をはるかに上回り、モデル性能のほとんど無視できる劣化を伴って攻撃成功率を5%に低下させる。
論文 参考訳(メタデータ) (2024-10-18T01:08:03Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
現代のNLPモデルは、様々なソースから引き出された公開データセットでしばしば訓練される。
データ中毒攻撃は、攻撃者が設計した方法でモデルの振る舞いを操作できる。
バックドア攻撃に伴うリスクを軽減するために、いくつかの戦略が提案されている。
論文 参考訳(メタデータ) (2024-05-19T14:50:09Z) - Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
マルチモーダルコントラスト学習は高品質な機能を構築するための強力なパラダイムとして登場した。
バックドア攻撃は 訓練中に モデルに 悪意ある行動を埋め込む
我々は,革新的なトークンベースの局所的忘れ忘れ学習システムを導入する。
論文 参考訳(メタデータ) (2024-03-24T18:33:15Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - SATBA: An Invisible Backdoor Attack Based On Spatial Attention [7.405457329942725]
バックドア攻撃には、隠れたトリガーパターンを含むデータセットに対するDeep Neural Network(DNN)のトレーニングが含まれる。
既存のバックドア攻撃のほとんどは、2つの重大な欠点に悩まされている。
空間的注意とU-netモデルを用いてこれらの制限を克服するSATBAという新しいバックドアアタックを提案する。
論文 参考訳(メタデータ) (2023-02-25T10:57:41Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
我々は,タスク特性に基づいて,無目標で毒のみのバックドア攻撃を設計する。
攻撃によって、バックドアがターゲットモデルに埋め込まれると、トリガーパターンでスタンプされたオブジェクトの検出を失う可能性があることを示す。
論文 参考訳(メタデータ) (2022-11-02T17:05:45Z) - Resisting Deep Learning Models Against Adversarial Attack
Transferability via Feature Randomization [17.756085566366167]
本研究では,ディープラーニングモデルを対象とした8つの敵攻撃に抵抗する特徴ランダム化に基づく手法を提案する。
本手法は,標的ネットワークを確保でき,敵の攻撃伝達可能性に対して60%以上抵抗することができる。
論文 参考訳(メタデータ) (2022-09-11T20:14:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。