Enhancing Trust in LLM-Based AI Automation Agents: New Considerations
and Future Challenges
- URL: http://arxiv.org/abs/2308.05391v1
- Date: Thu, 10 Aug 2023 07:12:11 GMT
- Title: Enhancing Trust in LLM-Based AI Automation Agents: New Considerations
and Future Challenges
- Authors: Sivan Schwartz, Avi Yaeli, Segev Shlomov
- Abstract summary: In the field of process automation, a new generation of AI-based agents has emerged, enabling the execution of complex tasks.
This paper analyzes the main aspects of trust in AI agents discussed in existing literature, and identifies specific considerations and challenges relevant to this new generation of automation agents.
- Score: 2.6212127510234797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trust in AI agents has been extensively studied in the literature, resulting
in significant advancements in our understanding of this field. However, the
rapid advancements in Large Language Models (LLMs) and the emergence of
LLM-based AI agent frameworks pose new challenges and opportunities for further
research. In the field of process automation, a new generation of AI-based
agents has emerged, enabling the execution of complex tasks. At the same time,
the process of building automation has become more accessible to business users
via user-friendly no-code tools and training mechanisms. This paper explores
these new challenges and opportunities, analyzes the main aspects of trust in
AI agents discussed in existing literature, and identifies specific
considerations and challenges relevant to this new generation of automation
agents. We also evaluate how nascent products in this category address these
considerations. Finally, we highlight several challenges that the research
community should address in this evolving landscape.
Related papers
- Evolution of AI in Education: Agentic Workflows [2.1681971652284857]
Artificial intelligence (AI) has transformed various aspects of education.
Large language models (LLMs) are driving advancements in automated tutoring, assessment, and content generation.
To address these limitations and foster more sustainable technological practices, AI agents have emerged as a promising new avenue for educational innovation.
arXiv Detail & Related papers (2025-04-25T13:44:57Z) - A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
Large Language Models (LLMs) have propelled conversational AI from traditional dialogue systems into sophisticated agents capable of autonomous actions, contextual awareness, and multi-turn interactions with users.
This survey paper presents a desideratum for next-generation Conversational Agents - what has been achieved, what challenges persist, and what must be done for more scalable systems that approach human-level intelligence.
arXiv Detail & Related papers (2025-04-07T21:01:25Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.
This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.
Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - A Survey of Large Language Model Agents for Question Answering [0.7416846035207727]
This paper surveys the development of large language model (LLM)-based agents for question answering (QA)
Traditional agents face significant limitations, including substantial data requirements and difficulty in generalizing to new environments.
LLM-based agents address these challenges by leveraging LLMs as their core reasoning engine.
arXiv Detail & Related papers (2025-03-24T23:39:44Z) - PentestAgent: Incorporating LLM Agents to Automated Penetration Testing [6.815381197173165]
Manual penetration testing is time-consuming and expensive.
Recent advancements in large language models (LLMs) offer new opportunities for enhancing penetration testing.
We propose PentestAgent, a novel LLM-based automated penetration testing framework.
arXiv Detail & Related papers (2024-11-07T21:10:39Z) - Hacking, The Lazy Way: LLM Augmented Pentesting [0.0]
"LLM Augmented Pentesting" is demonstrated through a tool named "Pentest Copilot"
Our research includes a "chain of thought" mechanism to streamline token usage and boost performance.
We propose a novel file analysis approach, enabling LLMs to understand files.
arXiv Detail & Related papers (2024-09-14T17:40:35Z) - Recent Advances in Generative AI and Large Language Models: Current Status, Challenges, and Perspectives [10.16399860867284]
The emergence of Generative Artificial Intelligence (AI) and Large Language Models (LLMs) has marked a new era of Natural Language Processing (NLP)
This paper explores the current state of these cutting-edge technologies, demonstrating their remarkable advancements and wide-ranging applications.
arXiv Detail & Related papers (2024-07-20T18:48:35Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
We argue that current large-scale generative AI models do not sufficiently address several fundamental issues that hinder their widespread adoption across domains.
In this work, we aim to identify key unresolved challenges in modern generative AI paradigms that should be tackled to further enhance their capabilities, versatility, and reliability.
arXiv Detail & Related papers (2024-02-28T15:19:33Z) - Towards a Responsible AI Metrics Catalogue: A Collection of Metrics for
AI Accountability [28.67753149592534]
This study bridges the accountability gap by introducing our effort towards a comprehensive metrics catalogue.
Our catalogue delineates process metrics that underpin procedural integrity, resource metrics that provide necessary tools and frameworks, and product metrics that reflect the outputs of AI systems.
arXiv Detail & Related papers (2023-11-22T04:43:16Z) - An In-depth Survey of Large Language Model-based Artificial Intelligence
Agents [11.774961923192478]
We have explored the core differences and characteristics between LLM-based AI agents and traditional AI agents.
We conducted an in-depth analysis of the key components of AI agents, including planning, memory, and tool use.
arXiv Detail & Related papers (2023-09-23T11:25:45Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - A Survey on Large Language Model based Autonomous Agents [105.2509166861984]
Large language models (LLMs) have demonstrated remarkable potential in achieving human-level intelligence.
This paper delivers a systematic review of the field of LLM-based autonomous agents from a holistic perspective.
We present a comprehensive overview of the diverse applications of LLM-based autonomous agents in the fields of social science, natural science, and engineering.
arXiv Detail & Related papers (2023-08-22T13:30:37Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.