An In-depth Survey of Large Language Model-based Artificial Intelligence
Agents
- URL: http://arxiv.org/abs/2309.14365v1
- Date: Sat, 23 Sep 2023 11:25:45 GMT
- Title: An In-depth Survey of Large Language Model-based Artificial Intelligence
Agents
- Authors: Pengyu Zhao and Zijian Jin and Ning Cheng
- Abstract summary: We have explored the core differences and characteristics between LLM-based AI agents and traditional AI agents.
We conducted an in-depth analysis of the key components of AI agents, including planning, memory, and tool use.
- Score: 11.774961923192478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the powerful capabilities demonstrated by large language model (LLM),
there has been a recent surge in efforts to integrate them with AI agents to
enhance their performance. In this paper, we have explored the core differences
and characteristics between LLM-based AI agents and traditional AI agents.
Specifically, we first compare the fundamental characteristics of these two
types of agents, clarifying the significant advantages of LLM-based agents in
handling natural language, knowledge storage, and reasoning capabilities.
Subsequently, we conducted an in-depth analysis of the key components of AI
agents, including planning, memory, and tool use. Particularly, for the crucial
component of memory, this paper introduced an innovative classification scheme,
not only departing from traditional classification methods but also providing a
fresh perspective on the design of an AI agent's memory system. We firmly
believe that in-depth research and understanding of these core components will
lay a solid foundation for the future advancement of AI agent technology. At
the end of the paper, we provide directional suggestions for further research
in this field, with the hope of offering valuable insights to scholars and
researchers in the field.
Related papers
- LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
We propose a novel LLM-based Agent Unified Modeling Framework (LLM-Agent-UMF)
Our framework distinguishes between the different components of an LLM-based agent, setting LLMs and tools apart from a new element, the core-agent.
We evaluate our framework by applying it to thirteen state-of-the-art agents, thereby demonstrating its alignment with their functionalities.
arXiv Detail & Related papers (2024-09-17T17:54:17Z) - A Survey on the Memory Mechanism of Large Language Model based Agents [66.4963345269611]
Large language model (LLM) based agents have recently attracted much attention from the research and industry communities.
LLM-based agents are featured in their self-evolving capability, which is the basis for solving real-world problems.
The key component to support agent-environment interactions is the memory of the agents.
arXiv Detail & Related papers (2024-04-21T01:49:46Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
This paper surveys current research to provide an in-depth overview of intelligent agents within single and multi-agent systems.
It covers their definitions, research frameworks, and foundational components such as their composition, cognitive and planning methods, tool utilization, and responses to environmental feedback.
We conclude by envisioning prospects for LLM-based agents, considering the evolving landscape of AI and natural language processing.
arXiv Detail & Related papers (2024-01-07T09:08:24Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Deciphering Digital Detectives: Understanding LLM Behaviors and
Capabilities in Multi-Agent Mystery Games [26.07074182316433]
We introduce the first dataset specifically for Jubensha, including character scripts and game rules.
Our work also presents a unique multi-agent interaction framework using LLMs, allowing AI agents to autonomously engage in this game.
To evaluate the gaming performance of these AI agents, we developed novel methods measuring their mastery of case information and reasoning skills.
arXiv Detail & Related papers (2023-12-01T17:33:57Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.