論文の概要: SSLRec: A Self-Supervised Learning Framework for Recommendation
- arxiv url: http://arxiv.org/abs/2308.05697v3
- Date: Tue, 30 Jan 2024 16:30:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-31 19:19:08.285419
- Title: SSLRec: A Self-Supervised Learning Framework for Recommendation
- Title(参考訳): SSLRec:レコメンデーションのための自己監督型学習フレームワーク
- Authors: Xubin Ren, Lianghao Xia, Yuhao Yang, Wei Wei, Tianle Wang, Xuheng Cai
and Chao Huang
- Abstract要約: SSLRecは、さまざまなSSL強化レコメンデータを評価するための、標準化され、フレキシブルで包括的なフレームワークを提供する、新しいベンチマークプラットフォームである。
私たちのSSLRecプラットフォームは、さまざまなシナリオにわたる最先端のSSL強化レコメンデーションモデルを包括的にカバーしています。
- 参考スコア(独自算出の注目度): 22.001376300511577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning (SSL) has gained significant interest in recent
years as a solution to address the challenges posed by sparse and noisy data in
recommender systems. Despite the growing number of SSL algorithms designed to
provide state-of-the-art performance in various recommendation scenarios (e.g.,
graph collaborative filtering, sequential recommendation, social
recommendation, KG-enhanced recommendation), there is still a lack of unified
frameworks that integrate recommendation algorithms across different domains.
Such a framework could serve as the cornerstone for self-supervised
recommendation algorithms, unifying the validation of existing methods and
driving the design of new ones. To address this gap, we introduce SSLRec, a
novel benchmark platform that provides a standardized, flexible, and
comprehensive framework for evaluating various SSL-enhanced recommenders. The
SSLRec framework features a modular architecture that allows users to easily
evaluate state-of-the-art models and a complete set of data augmentation and
self-supervised toolkits to help create SSL recommendation models with specific
needs. Furthermore, SSLRec simplifies the process of training and evaluating
different recommendation models with consistent and fair settings. Our SSLRec
platform covers a comprehensive set of state-of-the-art SSL-enhanced
recommendation models across different scenarios, enabling researchers to
evaluate these cutting-edge models and drive further innovation in the field.
Our implemented SSLRec framework is available at the source code repository
https://github.com/HKUDS/SSLRec.
- Abstract(参考訳): 自己教師付き学習(SSL)は、リコメンデーションシステムにおいてスパースとノイズの多いデータによって引き起こされる課題に対処するソリューションとして、近年大きな関心を集めている。
さまざまなレコメンデーションシナリオ(グラフコラボレーティブフィルタリング、シーケンシャルレコメンデーション、ソーシャルレコメンデーション、KG-enhancedレコメンデーションなど)で最先端のパフォーマンスを提供するために設計されたSSLアルゴリズムが増えているが、異なるドメインにまたがってレコメンデーションアルゴリズムを統合する統一フレームワークはいまだに存在しない。
このようなフレームワークは、自己監督型レコメンデーションアルゴリズムの基盤となり、既存のメソッドの検証を統一し、新しいメソッドの設計を推進する。
このギャップに対処するため、SSLRecという、SSLに強化されたさまざまな推奨者を評価するための、標準化され、フレキシブルで包括的なフレームワークを提供する、新しいベンチマークプラットフォームを紹介します。
SSLRecフレームワークは、ユーザが最先端のモデルを簡単に評価できるモジュラーアーキテクチャと、特定のニーズでSSLレコメンデーションモデルを作成するのに役立つ完全なデータ拡張と自己教師型ツールキットを備えている。
さらにSSLRecは、一貫性と公正な設定で、さまざまなレコメンデーションモデルのトレーニングと評価のプロセスを簡素化する。
私たちのSSLRecプラットフォームは、さまざまなシナリオにわたる最先端のSSL強化レコメンデーションモデルを包括的にカバーしています。
実装されたSSLRecフレームワークは、ソースコードリポジトリhttps://github.com/HKUDS/SSLRecで利用可能です。
関連論文リスト
- Real-Time Personalization for LLM-based Recommendation with Customized In-Context Learning [57.28766250993726]
この研究は、モデル更新なしに動的なユーザ関心に適応することを検討する。
既存のLarge Language Model (LLM)ベースのレコメンダは、レコメンデーションチューニング中にコンテキスト内学習能力を失うことが多い。
本稿では,レコメンデーション固有のインコンテキスト学習をリアルタイムレコメンデーションにカスタマイズするRecICLを提案する。
論文 参考訳(メタデータ) (2024-10-30T15:48:36Z) - Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning [4.137391543972184]
半教師付き学習(SSL)は目覚ましい進歩をみせており、多くの方法のバリエーションをもたらしている。
本稿では,FinSSLという新しいSSLアプローチを提案する。
我々は、FineSSLが複数のベンチマークデータセットにSSLの新たな状態を設定し、トレーニングコストを6倍以上削減し、さまざまな微調整と現代的なSSLアルゴリズムをシームレスに統合できることを実証した。
論文 参考訳(メタデータ) (2024-05-20T03:33:12Z) - Reinforcement Learning-Guided Semi-Supervised Learning [20.599506122857328]
本稿では,SSLを片腕バンディット問題として定式化する新しい強化学習ガイド型SSL手法 RLGSSL を提案する。
RLGSSLは、ラベル付きデータとラベルなしデータのバランスを保ち、一般化性能を向上させるために、慎重に設計された報酬関数を組み込んでいる。
我々は,複数のベンチマークデータセットに対する広範な実験を通じてRCGSSLの有効性を実証し,我々の手法が最先端のSSL手法と比較して一貫した優れた性能を実現することを示す。
論文 参考訳(メタデータ) (2024-05-02T21:52:24Z) - A Comprehensive Survey on Self-Supervised Learning for Recommendation [19.916057705072177]
本稿では,レコメンデータシステム用に設計された自己指導型学習フレームワークのレビューを行い,170以上の論文を網羅的に分析する。
本稿では,異なる自己指導型学習パラダイム,すなわちコントラスト学習,生成学習,対人学習について詳述し,SSLが様々な文脈におけるレコメンダシステムをどのように強化するかの技術的詳細を述べる。
論文 参考訳(メタデータ) (2024-04-04T10:45:23Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - Improving Self-Supervised Learning by Characterizing Idealized
Representations [155.1457170539049]
与えられたデータ拡張に不変なタスクに対して必要かつ十分な条件を証明します。
対照的に、我々のフレームワークは、従来の手法に対して単純だが重要な改善を規定している。
非コントラスト学習では、私たちのフレームワークを使って、シンプルで斬新な目的を導き出します。
論文 参考訳(メタデータ) (2022-09-13T18:01:03Z) - Unseen Classes at a Later Time? No Problem [17.254973125515402]
より実用的でフレキシブルなオンラインCGZSL設定を提案する。
これらのCGZSL設定のいずれにおいても時間とともに現れる新しいクラスの追加に動的に適応するために、双方向インクリメンタルアライメントを活用する、CGZSL用の統合機能生成フレームワークを導入する。
論文 参考訳(メタデータ) (2022-03-30T17:52:16Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z) - Self-Supervised Learning of Graph Neural Networks: A Unified Review [50.71341657322391]
ラベルなしサンプルを多用する新たなパラダイムとして,自己教師型学習が登場している。
SSLを用いたグラフニューラルネットワーク(GNNs)のトレーニング方法の統一レビューを提供します。
gnnに対するssl手法の処理は,様々な手法の類似性と相違に光を当て,新しい手法やアルゴリズムの開発段階を定めている。
論文 参考訳(メタデータ) (2021-02-22T03:43:45Z) - SemiNLL: A Framework of Noisy-Label Learning by Semi-Supervised Learning [58.26384597768118]
SemiNLLはSS戦略とSSLモデルをエンドツーエンドで組み合わせた汎用フレームワークである。
我々のフレームワークは、様々なSS戦略やSSLバックボーンを吸収し、そのパワーを利用して有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-12-02T01:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。