Fine-Grained Self-Supervised Learning with Jigsaw Puzzles for Medical
Image Classification
- URL: http://arxiv.org/abs/2308.05770v1
- Date: Thu, 10 Aug 2023 02:08:15 GMT
- Title: Fine-Grained Self-Supervised Learning with Jigsaw Puzzles for Medical
Image Classification
- Authors: Wongi Park and Jongbin Ryu
- Abstract summary: Classifying fine-grained lesions is challenging due to minor and subtle differences in medical images.
We introduce Fine-Grained Self-Supervised Learning(FG-SSL) method for classifying subtle lesions in medical images.
We evaluate the proposed fine-grained self-supervised learning method on comprehensive experiments using various medical image recognition datasets.
- Score: 11.320414512937946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classifying fine-grained lesions is challenging due to minor and subtle
differences in medical images. This is because learning features of
fine-grained lesions with highly minor differences is very difficult in
training deep neural networks. Therefore, in this paper, we introduce
Fine-Grained Self-Supervised Learning(FG-SSL) method for classifying subtle
lesions in medical images. The proposed method progressively learns the model
through hierarchical block such that the cross-correlation between the
fine-grained Jigsaw puzzle and regularized original images is close to the
identity matrix. We also apply hierarchical block for progressive fine-grained
learning, which extracts different information in each step, to supervised
learning for discovering subtle differences. Our method does not require an
asymmetric model, nor does a negative sampling strategy, and is not sensitive
to batch size. We evaluate the proposed fine-grained self-supervised learning
method on comprehensive experiments using various medical image recognition
datasets. In our experiments, the proposed method performs favorably compared
to existing state-of-the-art approaches on the widely-used ISIC2018, APTOS2019,
and ISIC2017 datasets.
Related papers
- Siamese Networks with Soft Labels for Unsupervised Lesion Detection and
Patch Pretraining on Screening Mammograms [7.917505566910886]
We propose an alternative method that uses contralateral mammograms to train a neural network to encode similar embeddings.
Our method demonstrates superior performance in mammogram patch classification compared to existing self-supervised learning methods.
arXiv Detail & Related papers (2024-01-10T22:27:37Z) - Self-similarity Driven Scale-invariant Learning for Weakly Supervised
Person Search [66.95134080902717]
We propose a novel one-step framework, named Self-similarity driven Scale-invariant Learning (SSL)
We introduce a Multi-scale Exemplar Branch to guide the network in concentrating on the foreground and learning scale-invariant features.
Experiments on PRW and CUHK-SYSU databases demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2023-02-25T04:48:11Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
We propose GraVIS, which is specifically optimized for learning self-supervised features from dermatology images.
GraVIS significantly outperforms its transfer learning and self-supervised learning counterparts in both lesion segmentation and disease classification tasks.
arXiv Detail & Related papers (2023-01-11T11:38:37Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Lesion-Aware Contrastive Representation Learning for Histopathology
Whole Slide Images Analysis [16.264758789726223]
We propose a novel contrastive representation learning framework named Lesion-Aware Contrastive Learning (LACL) for histopathology whole slide image analysis.
The experimental results demonstrate that LACL achieves the best performance in histopathology image representation learning on different datasets.
arXiv Detail & Related papers (2022-06-27T08:39:51Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
We propose a novel positional contrastive learning framework to generate contrastive data pairs.
The proposed PCL method can substantially improve the segmentation performance compared to existing methods in both semi-supervised setting and transfer learning setting.
arXiv Detail & Related papers (2021-06-16T22:15:28Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.