Siamese Networks with Soft Labels for Unsupervised Lesion Detection and
Patch Pretraining on Screening Mammograms
- URL: http://arxiv.org/abs/2401.05570v1
- Date: Wed, 10 Jan 2024 22:27:37 GMT
- Title: Siamese Networks with Soft Labels for Unsupervised Lesion Detection and
Patch Pretraining on Screening Mammograms
- Authors: Kevin Van Vorst and Li Shen
- Abstract summary: We propose an alternative method that uses contralateral mammograms to train a neural network to encode similar embeddings.
Our method demonstrates superior performance in mammogram patch classification compared to existing self-supervised learning methods.
- Score: 7.917505566910886
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Self-supervised learning has become a popular way to pretrain a deep learning
model and then transfer it to perform downstream tasks. However, most of these
methods are developed on large-scale image datasets that contain natural
objects with clear textures, outlines, and distinct color contrasts. It remains
uncertain whether these methods are equally effective for medical imaging,
where the regions of interest often blend subtly and indistinctly with the
surrounding tissues. In this study, we propose an alternative method that uses
contralateral mammograms to train a neural network to encode similar embeddings
when a pair contains both normal images and different embeddings when a pair
contains normal and abnormal images. Our approach leverages the natural
symmetry of human body as weak labels to learn to distinguish abnormal lesions
from background tissues in a fully unsupervised manner. Our findings suggest
that it's feasible by incorporating soft labels derived from the Euclidean
distances between the embeddings of the image pairs into the Siamese network
loss. Our method demonstrates superior performance in mammogram patch
classification compared to existing self-supervised learning methods. This
approach not only leverages a vast amount of image data effectively but also
minimizes reliance on costly labels, a significant advantage particularly in
the field of medical imaging.
Related papers
- Classification of Breast Cancer Histopathology Images using a Modified Supervised Contrastive Learning Method [4.303291247305105]
We improve the supervised contrastive learning method by leveraging both image-level labels and domain-specific augmentations to enhance model robustness.
We evaluate our method on the BreakHis dataset, which consists of breast cancer histopathology images.
This improvement corresponds to 93.63% absolute accuracy, highlighting the effectiveness of our approach in leveraging properties of data to learn more appropriate representation space.
arXiv Detail & Related papers (2024-05-06T17:06:11Z) - Fine-Grained Self-Supervised Learning with Jigsaw Puzzles for Medical
Image Classification [11.320414512937946]
Classifying fine-grained lesions is challenging due to minor and subtle differences in medical images.
We introduce Fine-Grained Self-Supervised Learning(FG-SSL) method for classifying subtle lesions in medical images.
We evaluate the proposed fine-grained self-supervised learning method on comprehensive experiments using various medical image recognition datasets.
arXiv Detail & Related papers (2023-08-10T02:08:15Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
We propose GraVIS, which is specifically optimized for learning self-supervised features from dermatology images.
GraVIS significantly outperforms its transfer learning and self-supervised learning counterparts in both lesion segmentation and disease classification tasks.
arXiv Detail & Related papers (2023-01-11T11:38:37Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Metadata-enhanced contrastive learning from retinal optical coherence tomography images [7.932410831191909]
We extend conventional contrastive frameworks with a novel metadata-enhanced strategy.
Our approach employs widely available patient metadata to approximate the true set of inter-image contrastive relationships.
Our approach outperforms both standard contrastive methods and a retinal image foundation model in five out of six image-level downstream tasks.
arXiv Detail & Related papers (2022-08-04T08:53:15Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
We present a novel method for the unsupervised domain adaptation for histological image analysis.
It is based on a backbone for embedding images into a feature space, and a graph neural layer for propa-gating the supervision signals of images with labels.
In experiments, our methodachieves state-of-the-art performance on four public datasets.
arXiv Detail & Related papers (2020-08-21T04:53:44Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Understanding the robustness of deep neural network classifiers for
breast cancer screening [52.50078591615855]
Deep neural networks (DNNs) show promise in breast cancer screening, but their robustness to input perturbations must be better understood before they can be clinically implemented.
We measure the sensitivity of a radiologist-level screening mammogram image classifier to four commonly studied input perturbations.
We also perform a detailed analysis on the effects of low-pass filtering, and find that it degrades the visibility of clinically meaningful features.
arXiv Detail & Related papers (2020-03-23T01:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.