Proposing a Dynamic Executive Microservices Architecture Model for AI
Systems
- URL: http://arxiv.org/abs/2308.05833v1
- Date: Thu, 10 Aug 2023 19:31:02 GMT
- Title: Proposing a Dynamic Executive Microservices Architecture Model for AI
Systems
- Authors: Mahyar Karimi, Ahmad Abdollahzadeh Barfroush
- Abstract summary: Microservices architecture is one of the new architectural styles that has improved in recent years.
Orchestration of the components in the architecture is one of the main challenges in distributed systems.
The presented model, as a pattern, can be used at the both design and development level of the system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Microservices architecture is one of the new architectural styles that has
improved in recent years. It has become a popular architectural style among
system architects and developers. This popularity increased with the advent of
new technologies and technological advancements in cloud computing. These
advancements caused the emergence of new design and development challenges for
service-based software systems. The increasing use of microservices
architecture in large organizations and teams has increased the need to find
appropriate solutions for architecture challenges. Orchestration of the
components in the microservices architecture is one of the main challenges in
distributed systems and affects the software quality in factors such as
efficiency, compatibility, stability, and reusability. In such systems,
software architecture consists of fine-grained components. Due to the
increasing number of microservices in a large-scale system, proper management
and communication orchestration of microservice components can become a point
of failure. In this article, the challenges of Microservices architecture have
been identified. To resolve the component orchestration challenges, an
appropriate model to maintain and improve quality is proposed. The presented
model, as a pattern, can be used at the both design and development level of
the system. The Dynamicity of software at runtime is the main achievement of
this pattern. In this model, microservice components orchestration tasks are
performed by using a BPMN-based workflow engine as the orchestrator component.
The orchestrator design gives the ability to create, track and modify new
composite microservices without the need to change platform infrastructure.
Related papers
- Software Design Pattern Model and Data Structure Algorithm Abilities on Microservices Architecture Design in High-tech Enterprises [0.4532517021515834]
This study investigates the impact of software design model capabilities and data structure algorithm abilities on architecture design within enterprises.
The findings reveal that organizations emphasizing robust design models and efficient algorithms achieve superior scalability, performance, and flexibility in their architecture.
arXiv Detail & Related papers (2024-11-05T07:26:53Z) - Exploring the design space of deep-learning-based weather forecasting systems [56.129148006412855]
This paper systematically analyzes the impact of different design choices on deep-learning-based weather forecasting systems.
We study fixed-grid architectures such as UNet, fully convolutional architectures, and transformer-based models.
We propose a hybrid system that combines the strong performance of fixed-grid models with the flexibility of grid-invariant architectures.
arXiv Detail & Related papers (2024-10-09T22:25:50Z) - An Infrastructure Cost Optimised Algorithm for Partitioning of Microservices [20.638612359627952]
As migrating applications into the cloud is universally adopted by the software industry, have proven to be the most suitable and widely accepted architecture pattern for applications deployed on distributed cloud.
Their efficacy is enabled by both technical benefits like reliability, fault isolation, scalability and productivity benefits like ease of asset maintenance and clear ownership boundaries.
In some cases, the complexity of migrating an existing application into the architecture becomes overwhelmingly complex and expensive.
arXiv Detail & Related papers (2024-08-13T02:08:59Z) - Microservices-based Software Systems Reengineering: State-of-the-Art and Future Directions [17.094721366340735]
Designing software compatible with cloud-based Microservice Architectures (MSAs) is vital due to the performance, scalability, and availability limitations.
We provide a comprehensive survey of current research into ways of identifying services in systems that can be redeployed as Static, dynamic, and hybrid approaches have been explored.
arXiv Detail & Related papers (2024-07-18T21:59:05Z) - Skills Composition Framework for Reconfigurable Cyber-Physical Production Modules [44.99833362998488]
This paper proposes a framework for skills' composition and execution in skill-based reconfigurable cyber-physical production modules.
It is based on distributed Behavior trees (BTs) and provides good integration between low-level devices' specific code and AI-based task-oriented frameworks.
arXiv Detail & Related papers (2024-05-22T12:56:05Z) - Systematic Mapping of Monolithic Applications to Microservices
Architecture [2.608935407927351]
It discusses the advantages of and the challenges that organizations face when transitioning from a monolithic system.
It presents a case study of a financial application and proposed techniques for identifying on monolithic systems using domain-driven development concepts.
arXiv Detail & Related papers (2023-09-07T15:47:11Z) - Machine Learning-Enabled Software and System Architecture Frameworks [48.87872564630711]
The stakeholders with data science and Machine Learning related concerns, such as data scientists and data engineers, are yet to be included in existing architecture frameworks.
We surveyed 61 subject matter experts from over 25 organizations in 10 countries.
arXiv Detail & Related papers (2023-08-09T21:54:34Z) - Heterogeneous Continual Learning [88.53038822561197]
We propose a novel framework to tackle the continual learning (CL) problem with changing network architectures.
We build on top of the distillation family of techniques and modify it to a new setting where a weaker model takes the role of a teacher.
We also propose Quick Deep Inversion (QDI) to recover prior task visual features to support knowledge transfer.
arXiv Detail & Related papers (2023-06-14T15:54:42Z) - AI Techniques in the Microservices Life-Cycle: A Survey [10.06596283248616]
In microservice systems, functionalities are provided by loosely coupled, small services, each focusing on a specific business capability.
Building a system according to the architectural style brings a number of challenges, mainly related to how different are deployed and coordinated.
In this paper, we provide a survey about how techniques in the area of Artificial Intelligence have been used to tackle these challenges.
arXiv Detail & Related papers (2023-05-25T14:24:37Z) - A Reference Software Architecture for Social Robots [64.86618385090416]
We propose a series of principles that social robots may benefit from.
These principles lay also the foundations for the design of a reference software architecture for Social Robots.
arXiv Detail & Related papers (2020-07-09T17:03:21Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
Modern convolutional networks such as ResNet and NASNet have achieved state-of-the-art results in many computer vision applications.
These networks consist of stages, which are sets of layers that operate on representations in the same resolution.
It has been demonstrated that increasing the number of layers in each stage improves the prediction ability of the network.
However, the resulting architecture becomes computationally expensive in terms of floating point operations, memory requirements and inference time.
arXiv Detail & Related papers (2020-04-23T14:16:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.