論文の概要: Seed Kernel Counting using Domain Randomization and Object Tracking
Neural Networks
- arxiv url: http://arxiv.org/abs/2308.05846v1
- Date: Thu, 10 Aug 2023 19:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 15:44:14.112133
- Title: Seed Kernel Counting using Domain Randomization and Object Tracking
Neural Networks
- Title(参考訳): ドメインランダム化と物体追跡ニューラルネットワークを用いたシードカーネルカウント
- Authors: Venkat Margapuri and Prapti Thapaliya and Mitchell Neilsen
- Abstract要約: 本稿では,低コストなメカニカルホッパー,トレーニングされたYOLOv8ニューラルネットワークモデル,およびStrongSORTおよびByteTrack上のオブジェクト追跡アルゴリズムを用いて,ビデオからの穀物収量を推定するシードカーネルカウンタを提案する。
この実験では、StrongSORTアルゴリズムでそれぞれ95.2%、Wheatで93.2%、ByteTrackアルゴリズムでそれぞれ96.8%、Wheatで92.4%の精度でシードカーネル数が得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-throughput phenotyping (HTP) of seeds, also known as seed phenotyping,
is the comprehensive assessment of complex seed traits such as growth,
development, tolerance, resistance, ecology, yield, and the measurement of
parameters that form more complex traits. One of the key aspects of seed
phenotyping is cereal yield estimation that the seed production industry relies
upon to conduct their business. While mechanized seed kernel counters are
available in the market currently, they are often priced high and sometimes
outside the range of small scale seed production firms' affordability. The
development of object tracking neural network models such as You Only Look Once
(YOLO) enables computer scientists to design algorithms that can estimate
cereal yield inexpensively. The key bottleneck with neural network models is
that they require a plethora of labelled training data before they can be put
to task. We demonstrate that the use of synthetic imagery serves as a feasible
substitute to train neural networks for object tracking that includes the tasks
of object classification and detection. Furthermore, we propose a seed kernel
counter that uses a low-cost mechanical hopper, trained YOLOv8 neural network
model, and object tracking algorithms on StrongSORT and ByteTrack to estimate
cereal yield from videos. The experiment yields a seed kernel count with an
accuracy of 95.2\% and 93.2\% for Soy and Wheat respectively using the
StrongSORT algorithm, and an accuray of 96.8\% and 92.4\% for Soy and Wheat
respectively using the ByteTrack algorithm.
- Abstract(参考訳): 種子の高スループット表現型 (high-throughput phenotyping, htp) は、成長、発達、耐性、耐性、生態、収量などの複雑な種子形質の包括的評価であり、より複雑な形質を形成するパラメータの測定である。
種子表現型化の重要な側面の1つは、種子生産産業が事業を行うのに依存している穀物収量の推定である。
現在、機械化されたシードカーネルカウンターが市場に出回っているが、しばしば高価で、小規模のシード生産会社の手頃価格の範囲外である。
You Only Look Once (YOLO)のような物体追跡ニューラルネットワークモデルの開発により、計算機科学者は穀物の収量を安価に推定できるアルゴリズムを設計できる。
ニューラルネットワークモデルにおける重要なボトルネックは、タスクに投入する前にラベル付きトレーニングデータを多用する必要があることだ。
合成画像の使用は、物体の分類と検出のタスクを含む物体追跡のためのニューラルネットワークの訓練の代替となることを実証する。
さらに,低コストなメカニカルホッパー,トレーニングされたYOLOv8ニューラルネットワークモデル,およびStrongSORTおよびByteTrack上のオブジェクト追跡アルゴリズムを用いて,ビデオからの穀物収量を推定するシードカーネルカウンタを提案する。
この実験では、種核数を95.2\%、小麦を93.2\%、ストロングソートアルゴリズムを96.8\%、小麦を92.4\%それぞれバイトトラックアルゴリズムを用いて算出する。
関連論文リスト
- Raspberry PhenoSet: A Phenology-based Dataset for Automated Growth Detection and Yield Estimation [1.2661567777618703]
7つの発達段階にまたがるラズベリー果実の検出とセグメンテーションのための表現学ベースのデータセットであるRaspberry PhenoSetを紹介した。
このデータセットには1,853枚の高解像度画像が含まれており、これは文学の中で最高品質であり、垂直農場で制御された人工照明の下で撮影された。
YOLOv8, YOLOv10, RT-DETR, Mask R-CNNなど,最先端のディープラーニングモデルをベンチマークして, データセットのパフォーマンスを総合的に評価した。
論文 参考訳(メタデータ) (2024-11-01T18:34:26Z) - Granular-ball computing: an efficient, robust, and interpretable
adaptive multi-granularity representation and computation method [54.2899493638937]
人間の認知は「グローバルファースト」認知メカニズムで動作し、粗い詳細に基づいて情報処理を優先順位付けする。
解析パターンは、最も微細な粒度と単一粒度に依存するため、既存の計算手法のほとんどは効率が悪く、堅牢で、解釈可能である。
多粒度グラニュラーボールコンピューティングは、サンプル空間を適度に表現し包み込むために、様々な大きさのグラニュラーボールを使用する。
グラニュラーボールコンピューティングは、AIにおいてまれで革新的な理論的アプローチであり、効率性、堅牢性、解釈可能性を適応的かつ同時に向上させることができる。
論文 参考訳(メタデータ) (2023-04-21T03:26:29Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
種子の成熟度モニタリングは、気候変動とより制限的な慣行による農業における課題の増加である。
従来の手法は、フィールドでの限られたサンプリングと実験室での分析に基づいている。
マルチスペクトルUAV画像を用いたパセリ種子の成熟度推定手法の提案と,自動ラベリングのための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-09T09:06:51Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
目的関数の幾何学的構造を解析することにより、刈り取られたニューラルネットワークを訓練する性能を解析する。
本稿では,ニューラルネットワークモデルがプルーニングされるにつれて,一般化が保証された望ましいモデル近傍の凸領域が大きくなることを示す。
論文 参考訳(メタデータ) (2021-10-12T01:11:07Z) - Classification of Seeds using Domain Randomization on Self-Supervised
Learning Frameworks [0.0]
鍵となるボトルネックは、畳み込みニューラルネットワーク(CNN)をトレーニングする大量のラベル付きデータの必要性である。
この研究は、これを達成するために、コントラスト学習とドメインランダム化の概念を活用している。
実世界の画像の表象的サンプル作物から生成された合成画像の使用は、大量のテスト対象の必要性を軽減する。
論文 参考訳(メタデータ) (2021-03-29T12:50:06Z) - WheatNet: A Lightweight Convolutional Neural Network for High-throughput
Image-based Wheat Head Detection and Counting [12.735055892742647]
本研究では,小麦頭数を正確にかつ効率的に計算し,意思決定のためのリアルタイムデータ収集を支援する新しいディープラーニングフレームワークを提案する。
モデルコムギ網とよばれ,小麦畑の幅広い環境条件において,我々のアプローチが頑健かつ正確であることを実証する。
提案手法は, 小麦頭部計数タスクにおけるMAEとRMSEの3.85と5.19をそれぞれ達成し, 他の最先端手法に比べてパラメータが有意に少ない。
論文 参考訳(メタデータ) (2021-03-17T02:38:58Z) - Seed Phenotyping on Neural Networks using Domain Randomization and
Transfer Learning [0.0]
種子表現型は、種子の形態的特性を分析して、その挙動を発達、耐性、収量の観点から予測する考え方である。
研究の焦点は、最先端のオブジェクト検出およびローカリゼーションネットワークの適用および実現可能性分析である。
論文 参考訳(メタデータ) (2020-12-24T14:04:28Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。