論文の概要: Revisiting N-CNN for Clinical Practice
- arxiv url: http://arxiv.org/abs/2308.05877v1
- Date: Thu, 10 Aug 2023 23:22:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 15:22:03.007394
- Title: Revisiting N-CNN for Clinical Practice
- Title(参考訳): 臨床におけるN-CNNの再検討
- Authors: Leonardo Antunes Ferreira, Lucas Pereira Carlini, Gabriel de Almeida
S\'a Coutrin, Tatiany Marcondes Heideirich, Marina Carvalho de Moraes Barros,
Ruth Guinsburg and Carlos Eduardo Thomaz
- Abstract要約: 我々は、そのハイパーパラメータを最適化することで、新生児畳み込みニューラルネットワーク(N-CNN)を再考する。
本研究は,その分類基準,説明可能性,信頼性にどのように影響するかを考察し,臨床実習における潜在的な影響について考察した。
これらの知見が新生児のより信頼性の高い痛み評価ツールの開発に寄与する可能性があると考えている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper revisits the Neonatal Convolutional Neural Network (N-CNN) by
optimizing its hyperparameters and evaluating how they affect its
classification metrics, explainability and reliability, discussing their
potential impact in clinical practice. We have chosen hyperparameters that do
not modify the original N-CNN architecture, but mainly modify its learning rate
and training regularization. The optimization was done by evaluating the
improvement in F1 Score for each hyperparameter individually, and the best
hyperparameters were chosen to create a Tuned N-CNN. We also applied soft
labels derived from the Neonatal Facial Coding System, proposing a novel
approach for training facial expression classification models for neonatal pain
assessment. Interestingly, while the Tuned N-CNN results point towards
improvements in classification metrics and explainability, these improvements
did not directly translate to calibration performance. We believe that such
insights might have the potential to contribute to the development of more
reliable pain evaluation tools for newborns, aiding healthcare professionals in
delivering appropriate interventions and improving patient outcomes.
- Abstract(参考訳): 本稿では,新生児畳み込みニューラルネット(n-cnn)のハイパーパラメータを最適化し,その分類基準,説明可能性,信頼性にどのように影響するかを評価し,臨床効果について考察する。
我々は,元のN-CNNアーキテクチャを変更せずに,学習率や正規化の訓練を行うハイパーパラメータを選択した。
最適化は、各ハイパーパラメータに対するf1スコアの改善を個別に評価し、最適なハイパーパラメータを選択してチューニングしたn-cnnを作成した。
また,新生児顔面コーディングシステムに基づくソフトラベルを適用し,新生児の痛み評価のための表情分類モデルの訓練手法を提案する。
興味深いことに、Tuned N-CNNの結果は分類基準と説明可能性の改善に向けられているが、これらの改善はキャリブレーション性能に直接変換されなかった。
このような洞察は、新生児のより信頼性の高い痛み評価ツールの開発に寄与する可能性があり、医療専門家が適切な介入を行い、患者の成果を改善するのに役立つと信じています。
関連論文リスト
- Decoupling Feature Extraction and Classification Layers for Calibrated Neural Networks [3.5284544394841117]
過度にパラメータ化されたDNNアーキテクチャにおける特徴抽出層と分類層の訓練を分離することで、モデルの校正が大幅に向上することを示す。
本稿では,複数の画像分類ベンチマークデータセットに対して,VTおよびWRNアーキテクチャ間のキャリブレーションを改善する手法を提案する。
論文 参考訳(メタデータ) (2024-05-02T11:36:17Z) - Applying Dimensionality Reduction as Precursor to LSTM-CNN Models for
Classifying Imagery and Motor Signals in ECoG-Based BCIs [0.0]
本研究は,脳-コンピュータインタフェース(BCI)内での運動画像分類アルゴリズムを最適化することにより,領域を拡大することを目的とする。
我々は、次元削減のための教師なし手法、すなわち、一様多様体近似と投影(UMAP)とK-Nearest Neighbors(KNN)を利用する。
また,Long Short-Term Memory (LSTM) やConvolutional Neural Networks (CNN) といった教師付き手法を,分類タスクに活用することの必要性も評価した。
論文 参考訳(メタデータ) (2023-11-22T16:34:06Z) - Informative Priors Improve the Reliability of Multimodal Clinical Data
Classification [7.474271086307501]
ニューラルネットワークを考慮し、ネットワークパラメータよりも先に分布する、テーラーメイドのマルチモーダルデータ駆動型(M2D2)を設計する。
我々は、M2D2以前のベイズニューラルネットワークをトレーニングするために、単純でスケーラブルな平均場変動推定を用いる。
実験の結果,提案手法は決定論的およびベイズ的ニューラルネットワークベースラインと比較して,より信頼性の高い予測モデルを生成することがわかった。
論文 参考訳(メタデータ) (2023-11-17T03:44:15Z) - Achieving Constraints in Neural Networks: A Stochastic Augmented
Lagrangian Approach [49.1574468325115]
DNN(Deep Neural Networks)の正規化は、一般化性の向上とオーバーフィッティングの防止に不可欠である。
制約付き最適化問題としてトレーニングプロセスのフレーミングによるDNN正規化に対する新しいアプローチを提案する。
我々はAugmented Lagrangian (SAL) 法を用いて、より柔軟で効率的な正規化機構を実現する。
論文 参考訳(メタデータ) (2023-10-25T13:55:35Z) - Enhancing Fault Resilience of QNNs by Selective Neuron Splitting [1.1091582432763736]
ディープニューラルネットワーク(DNN)の複雑さに取り組むために量子ニューラルネットワーク(QNN)が登場した。
本稿では,ニューロン脆弱性因子(NVF)に基づく臨界ニューロンの同定にQNNを用いた最近の解析的レジリエンス評価手法を提案する。
計算部分を再設計することなく、加速器内に軽量補正ユニット(LCU)を設計できる臨界ニューロン分割法が提案されている。
論文 参考訳(メタデータ) (2023-06-16T17:11:55Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - KNN-BERT: Fine-Tuning Pre-Trained Models with KNN Classifier [61.063988689601416]
事前学習されたモデルは、クロスエントロピー損失によって最適化された線形分類器を用いて、微調整された下流タスクに広く利用されている。
これらの問題は、同じクラスの類似点と、予測を行う際の矛盾点に焦点を当てた表現を学習することで改善することができる。
本稿では、事前訓練されたモデル微調整タスクにおけるKNearest Neighborsについて紹介する。
論文 参考訳(メタデータ) (2021-10-06T06:17:05Z) - Differentially private training of neural networks with Langevin
dynamics forcalibrated predictive uncertainty [58.730520380312676]
その結果,DP-SGD(差分偏差勾配勾配勾配勾配勾配)は,低校正・過信深層学習モデルが得られることがわかった。
これは、医療診断など、安全クリティカルな応用にとって深刻な問題である。
論文 参考訳(メタデータ) (2021-07-09T08:14:45Z) - Weighted Neural Tangent Kernel: A Generalized and Improved
Network-Induced Kernel [20.84988773171639]
Neural Tangent Kernel(NTK)は、勾配降下によって訓練された過剰パラメーターニューラルネットワーク(NN)の進化を記述することで、近年、激しい研究を惹きつけている。
Weighted Neural Tangent Kernel (WNTK) は、一般化された改良されたツールであり、異なる勾配の下でパラメータ化されたNNのトレーニングダイナミクスをキャプチャすることができる。
提案する重み更新アルゴリズムでは,実験値と解析値の両方が,数値実験において対応するntkを上回っている。
論文 参考訳(メタデータ) (2021-03-22T03:16:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。