論文の概要: Audio is all in one: speech-driven gesture synthetics using WavLM
pre-trained model
- arxiv url: http://arxiv.org/abs/2308.05995v1
- Date: Fri, 11 Aug 2023 08:03:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 14:45:29.466049
- Title: Audio is all in one: speech-driven gesture synthetics using WavLM
pre-trained model
- Title(参考訳): 音声は一つだ:wavlm事前学習モデルを用いた音声駆動ジェスチャー合成
- Authors: Fan Zhang, Naye Ji, Fuxing Gao, Siyuan Zhao, Zhaohan Wang, Shunman Li
- Abstract要約: diffmotion-v2は、WavLM事前学習モデルを用いた音声条件拡散に基づく生成モデルである。
生音声のみを使用して、個人的でスタイリングされたフルボディの音声合成ジェスチャを生成することができる。
- 参考スコア(独自算出の注目度): 3.261771363191831
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generation of co-speech gestures for digital humans is an emerging area
in the field of virtual human creation. Prior research has made progress by
using acoustic and semantic information as input and adopting classify method
to identify the person's ID and emotion for driving co-speech gesture
generation. However, this endeavour still faces significant challenges. These
challenges go beyond the intricate interplay between co-speech gestures, speech
acoustic, and semantics; they also encompass the complexities associated with
personality, emotion, and other obscure but important factors. This paper
introduces "diffmotion-v2," a speech-conditional diffusion-based and
non-autoregressive transformer-based generative model with WavLM pre-trained
model. It can produce individual and stylized full-body co-speech gestures only
using raw speech audio, eliminating the need for complex multimodal processing
and manually annotated. Firstly, considering that speech audio not only
contains acoustic and semantic features but also conveys personality traits,
emotions, and more subtle information related to accompanying gestures, we
pioneer the adaptation of WavLM, a large-scale pre-trained model, to extract
low-level and high-level audio information. Secondly, we introduce an adaptive
layer norm architecture in the transformer-based layer to learn the
relationship between speech information and accompanying gestures. Extensive
subjective evaluation experiments are conducted on the Trinity, ZEGGS, and BEAT
datasets to confirm the WavLM and the model's ability to synthesize natural
co-speech gestures with various styles.
- Abstract(参考訳): デジタル人間のための共同ジェスチャーの生成は、仮想人間の創造の分野における新しい分野である。
従来の研究では、音声と意味情報を入力として使用し、その人物のIDと感情を識別する分類法を採用し、共同音声ジェスチャ生成を推進してきた。
しかし、この取り組みは依然として大きな課題に直面している。
これらの課題は、共同音声ジェスチャー、音声音響、意味論の複雑な相互作用を超えており、人格、感情、その他の不明瞭だが重要な要素に関連する複雑さも含む。
本稿では,WavLM事前学習モデルを用いた音声条件拡散モデルと非自己回帰変換器生成モデルである「diffmotion-v2」を紹介する。
生音声のみを使用して、個別でスタイリングされたフルボディの音声ジェスチャーを作成でき、複雑なマルチモーダル処理や手動のアノテートを必要としない。
まず,音声の音響的特徴や意味的特徴だけでなく,関連するジェスチャーに関連する性格的特徴や感情,さらに微妙な情報を伝達することを考えると,大規模事前学習モデルであるWavLMの応用を開拓し,低レベルかつ高レベルな音声情報を抽出する。
第2に,変換器をベースとした適応層ノルムアーキテクチャを導入し,音声情報と随伴ジェスチャーの関係を学習する。
The Trinity, ZEGGS, BEATデータセットを用いて広範囲な主観評価実験を行い、WavLMとモデルが様々なスタイルで自然な音声合成を行う能力を確認する。
関連論文リスト
- Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speech Affective Face and Body Expressions from Affordable Inputs [67.27840327499625]
本稿では,デジタル文字の表情と上半身ジェスチャーを同時に合成するマルチモーダル学習手法を提案する。
提案手法は, 映像データから直接推定される, まばらな顔のランドマークと上体関節から学習し, もっともらしい感情的性格運動を生成する。
論文 参考訳(メタデータ) (2024-06-26T04:53:11Z) - ConvoFusion: Multi-Modal Conversational Diffusion for Co-Speech Gesture Synthesis [50.69464138626748]
マルチモーダルなジェスチャー合成のための拡散に基づくアプローチであるConvoFusionを提案する。
提案手法は,条件の異なる条件が与える影響をユーザが調節できる2つの誘導目標を提案する。
本手法は,モノログジェスチャを生成するか,会話ジェスチャを生成するかの訓練が可能である。
論文 参考訳(メタデータ) (2024-03-26T17:59:52Z) - Natural language guidance of high-fidelity text-to-speech with synthetic
annotations [13.642358232817342]
本稿では,話者識別,スタイル,記録条件の様々な側面をラベル付けするスケーラブルな手法を提案する。
次に、この手法を45k時間データセットに適用し、音声言語モデルを訓練する。
その結果, アクセント, 韻律スタイル, チャネル条件, 音響条件の多岐にわたる高忠実度音声生成が得られた。
論文 参考訳(メタデータ) (2024-02-02T21:29:34Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
本研究では、2つのエンコーダを用いて音素と音声を複数モーダル空間に導入するCTAP(Contrastive Token-Acoustic Pretraining)を提案する。
提案したCTAPモデルは、210k音声と音素ペアで訓練され、最小教師付きTS、VC、ASRを実現する。
論文 参考訳(メタデータ) (2023-09-01T12:35:43Z) - Zero-Shot Style Transfer for Gesture Animation driven by Text and Speech
using Adversarial Disentanglement of Multimodal Style Encoding [3.2116198597240846]
本稿では,韻律的特徴とテキストによって駆動されるジェスチャーを異なる話者のスタイルで合成する,効率的かつ効果的な機械学習手法を提案する。
本モデルは,様々な話者のビデオを含むPATSデータベースからのマルチモーダルデータによって駆動されるゼロショットマルチモーダル方式の転送を行う。
論文 参考訳(メタデータ) (2022-08-03T08:49:55Z) - GenerSpeech: Towards Style Transfer for Generalizable Out-Of-Domain
Text-to-Speech Synthesis [68.42632589736881]
本稿では,OODカスタム音声の高忠実度ゼロショットスタイル転送に向けたテキスト音声合成モデルGenerSpeechを提案する。
GenerSpeechは、2つのコンポーネントを導入することで、音声のバリエーションをスタイルに依存しない部分とスタイル固有の部分に分解する。
ゼロショット方式の転送について評価したところ,GenerSpeechは音質やスタイルの類似性の観点から,最先端のモデルを上回っていることがわかった。
論文 参考訳(メタデータ) (2022-05-15T08:16:02Z) - Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement
by Re-Synthesis [67.73554826428762]
本稿では,AR/VRにおける高忠実度通信のための新しい音声・視覚音声強調フレームワークを提案する。
提案手法は音声・視覚音声の手がかりを利用してニューラル音声のコードを生成することで,ノイズ信号からクリーンでリアルな音声を効率的に合成する。
論文 参考訳(メタデータ) (2022-03-31T17:57:10Z) - Learning Hierarchical Cross-Modal Association for Co-Speech Gesture
Generation [107.10239561664496]
協調音声ジェスチャ生成のためのHA2G(Hierarchical Audio-to-Gesture)という新しいフレームワークを提案する。
提案手法は,現実的な共同音声ジェスチャーを描画し,従来手法よりも明確なマージンで性能を向上する。
論文 参考訳(メタデータ) (2022-03-24T16:33:29Z) - Speech Gesture Generation from the Trimodal Context of Text, Audio, and
Speaker Identity [21.61168067832304]
本稿では、音声テキスト、音声、話者識別のマルチモーダルコンテキストを用いてジェスチャーを確実に生成する自動ジェスチャー生成モデルを提案する。
提案手法を用いた評価実験により,提案したジェスチャー生成モデルは既存のエンドツーエンド生成モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-09-04T11:42:45Z) - Gesticulator: A framework for semantically-aware speech-driven gesture
generation [17.284154896176553]
任意のビートとセマンティックなジェスチャーを同時に生成するモデルを提案する。
深層学習に基づくモデルでは、音声の音響的表現と意味的表現の両方を入力とし、入力として関節角回転の列としてジェスチャーを生成する。
結果として得られるジェスチャーは、仮想エージェントとヒューマノイドロボットの両方に適用できる。
論文 参考訳(メタデータ) (2020-01-25T14:42:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。