論文の概要: Safeguarding Learning-based Control for Smart Energy Systems with
Sampling Specifications
- arxiv url: http://arxiv.org/abs/2308.06069v1
- Date: Fri, 11 Aug 2023 11:09:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-14 14:14:03.933090
- Title: Safeguarding Learning-based Control for Smart Energy Systems with
Sampling Specifications
- Title(参考訳): サンプル仕様によるスマートエネルギーシステムの学習ベース制御の保護
- Authors: Chih-Hong Cheng, Venkatesh Prasad Venkataramanan, Pragya Kirti Gupta,
Yun-Fei Hsu, Simon Burton
- Abstract要約: エネルギーシステムの制御における強化学習を用いた課題について検討し,性能要件とは別に,停電回避などの安全性要件も検討した。
実時間時相論理におけるこれらの安全要件が,線形時相論理への離散化によってどのように強化されるのかを詳述する。
- 参考スコア(独自算出の注目度): 0.31498833540989407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study challenges using reinforcement learning in controlling energy
systems, where apart from performance requirements, one has additional safety
requirements such as avoiding blackouts. We detail how these safety
requirements in real-time temporal logic can be strengthened via discretization
into linear temporal logic (LTL), such that the satisfaction of the LTL
formulae implies the satisfaction of the original safety requirements. The
discretization enables advanced engineering methods such as synthesizing
shields for safe reinforcement learning as well as formal verification, where
for statistical model checking, the probabilistic guarantee acquired by LTL
model checking forms a lower bound for the satisfaction of the original
real-time safety requirements.
- Abstract(参考訳): エネルギーシステムの制御における強化学習を用いた課題について検討し,性能要件とは別に,停電回避などの安全性要件も検討した。
線形時相論理 (ltl) への離散化により, リアルタイム時相論理におけるこれらの安全性要件が強化され, ltlの満足度が元の安全性要件の満足度を意味する。
この離散化により、安全強化学習のためのシールドの合成や形式的検証などの高度な工学的手法が可能となり、統計モデル検査では、LTLモデル検査によって得られた確率的保証は、元のリアルタイム安全要件の満足度を低くする。
関連論文リスト
- Safety through Permissibility: Shield Construction for Fast and Safe Reinforcement Learning [57.84059344739159]
シールドディング」は、強化学習(RL)の安全性を強制する一般的な手法である
安全と遮蔽構造に対処する新しい許容性に基づく枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T18:00:21Z) - System Safety Monitoring of Learned Components Using Temporal Metric Forecasting [8.76735390039138]
学習可能な自律システムにおいて、学習したコンポーネントの安全性監視は、その出力がシステムの安全性違反に結びつかないことを保証するために不可欠である。
本稿では,確率的時系列予測に基づく安全監視手法を提案する。
安全度と違反予測精度を実証的に評価し、4つの最先端モデルの推論遅延とリソース使用率について検討した。
論文 参考訳(メタデータ) (2024-05-21T23:48:26Z) - Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical
Systems [15.863561935347692]
非線形力学系の制御のための安全かつ収束性のある強化学習アルゴリズムを開発した。
制御とRLの交差点における最近の進歩は、ハードセーフティ制約を強制するための2段階の安全フィルタアプローチに従っている。
我々は,古典的な収束保証を享受するRLコントローラを学習する,一段階のサンプリングに基づくハード制約満足度へのアプローチを開発する。
論文 参考訳(メタデータ) (2024-03-06T19:39:20Z) - Safe Model-Based Reinforcement Learning with an Uncertainty-Aware
Reachability Certificate [6.581362609037603]
我々は、DRCとそれに対応するシールドポリシーの制約を解決するために、安全な強化学習フレームワークを構築します。
また,シールドポリシを活用しつつ,安全性と高いリターンを同時に達成するためのラインサーチ手法も考案した。
論文 参考訳(メタデータ) (2022-10-14T06:16:53Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Safe Reinforcement Learning via Confidence-Based Filters [78.39359694273575]
我々は,標準的な強化学習技術を用いて学習した名目政策に対して,国家安全の制約を認定するための制御理論的アプローチを開発する。
我々は、正式な安全保証を提供し、我々のアプローチの有効性を実証的に実証する。
論文 参考訳(メタデータ) (2022-07-04T11:43:23Z) - Model-Free Learning of Safe yet Effective Controllers [11.876140218511157]
私達はまた有効な安全な制御方針を学ぶ問題を研究します。
まず,安全を確保する確率を最大化する方針を学習するモデルフリー強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-26T17:05:12Z) - Closing the Closed-Loop Distribution Shift in Safe Imitation Learning [80.05727171757454]
模倣学習問題において,安全な最適化に基づく制御戦略を専門家として扱う。
我々は、実行時に安価に評価でき、専門家と同じ安全保証を確実に満足する学習されたポリシーを訓練する。
論文 参考訳(メタデータ) (2021-02-18T05:11:41Z) - Cautious Reinforcement Learning with Logical Constraints [78.96597639789279]
適応型安全なパッドディングは、学習プロセス中の安全性を確保しつつ、RL(Reinforcement Learning)に最適な制御ポリシーの合成を強制する。
理論的な保証は、合成されたポリシーの最適性と学習アルゴリズムの収束について利用できる。
論文 参考訳(メタデータ) (2020-02-26T00:01:08Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。