Enhancing Network Management Using Code Generated by Large Language
Models
- URL: http://arxiv.org/abs/2308.06261v1
- Date: Fri, 11 Aug 2023 17:49:15 GMT
- Title: Enhancing Network Management Using Code Generated by Large Language
Models
- Authors: Sathiya Kumaran Mani, Yajie Zhou, Kevin Hsieh, Santiago Segarra,
Ranveer Chandra, and Srikanth Kandula
- Abstract summary: We introduce a novel approach to facilitate a natural-language-based network management experience, utilizing large language models (LLMs) to generate task-specific code from natural language queries.
This method tackles the challenges of explainability, scalability, and privacy by allowing network operators to inspect the generated code.
We design and evaluate a prototype system using benchmark applications, showcasing high accuracy, cost-effectiveness, and the potential for further enhancements.
- Score: 15.557254786007325
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Analyzing network topologies and communication graphs plays a crucial role in
contemporary network management. However, the absence of a cohesive approach
leads to a challenging learning curve, heightened errors, and inefficiencies.
In this paper, we introduce a novel approach to facilitate a
natural-language-based network management experience, utilizing large language
models (LLMs) to generate task-specific code from natural language queries.
This method tackles the challenges of explainability, scalability, and privacy
by allowing network operators to inspect the generated code, eliminating the
need to share network data with LLMs, and concentrating on application-specific
requests combined with general program synthesis techniques. We design and
evaluate a prototype system using benchmark applications, showcasing high
accuracy, cost-effectiveness, and the potential for further enhancements using
complementary program synthesis techniques.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Large Language Models for Knowledge-Free Network Management: Feasibility Study and Opportunities [36.70339455624253]
This article presents a novel knowledge-free network management paradigm with the power of foundation models called large language models (LLMs)
LLMs can understand important contexts from input prompts containing minimal system information, thereby offering remarkable inference performance even for entirely new tasks.
Numerical results validate that knowledge-free LLMs are able to achieve comparable performance to existing knowledge-based optimization algorithms.
arXiv Detail & Related papers (2024-10-06T07:42:23Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
We present NetLLM, the first framework that provides a coherent design to harness the powerful capabilities of LLMs with low efforts to solve networking problems.
Specifically, NetLLM empowers the LLM to effectively process multimodal data in networking and efficiently generate task-specific answers.
arXiv Detail & Related papers (2024-02-04T04:21:34Z) - COOL: A Constraint Object-Oriented Logic Programming Language and its
Neural-Symbolic Compilation System [0.0]
We introduce the COOL programming language, which seamlessly combines logical reasoning with neural network technologies.
COOL is engineered to autonomously handle data collection, mitigating the need for user-supplied initial data.
It incorporates user prompts into the coding process to reduce the risks of undertraining and enhances the interaction among models throughout their lifecycle.
arXiv Detail & Related papers (2023-11-07T06:29:59Z) - netFound: Foundation Model for Network Security [11.38388749887112]
This paper introduces a novel transformer-based network foundation model, netFound.
We employ self-supervised learning techniques on abundant, unlabeled network telemetry data for pre-training.
Our results demonstrate that netFound effectively captures the hidden networking context in production settings.
arXiv Detail & Related papers (2023-10-25T22:04:57Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
Ultra-reliable and low-latency communications (URLLC) will be central for the development of various emerging mission-critical applications.
Deep learning algorithms have been considered as promising ways of developing enabling technologies for URLLC in future 6G networks.
This tutorial illustrates how domain knowledge can be integrated into different kinds of deep learning algorithms for URLLC.
arXiv Detail & Related papers (2020-09-13T14:53:01Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Synthetic Datasets for Neural Program Synthesis [66.20924952964117]
We propose a new methodology for controlling and evaluating the bias of synthetic data distributions over both programs and specifications.
We demonstrate, using the Karel DSL and a small Calculator DSL, that training deep networks on these distributions leads to improved cross-distribution generalization performance.
arXiv Detail & Related papers (2019-12-27T21:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.