COOL: A Constraint Object-Oriented Logic Programming Language and its
Neural-Symbolic Compilation System
- URL: http://arxiv.org/abs/2311.03753v1
- Date: Tue, 7 Nov 2023 06:29:59 GMT
- Title: COOL: A Constraint Object-Oriented Logic Programming Language and its
Neural-Symbolic Compilation System
- Authors: Jipeng Han
- Abstract summary: We introduce the COOL programming language, which seamlessly combines logical reasoning with neural network technologies.
COOL is engineered to autonomously handle data collection, mitigating the need for user-supplied initial data.
It incorporates user prompts into the coding process to reduce the risks of undertraining and enhances the interaction among models throughout their lifecycle.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the integration of neural networks with logic
programming, addressing the longstanding challenges of combining the
generalization and learning capabilities of neural networks with the precision
of symbolic logic. Traditional attempts at this integration have been hampered
by difficulties in initial data acquisition, the reliability of undertrained
networks, and the complexity of reusing and augmenting trained models. To
overcome these issues, we introduce the COOL (Constraint Object-Oriented Logic)
programming language, an innovative approach that seamlessly combines logical
reasoning with neural network technologies. COOL is engineered to autonomously
handle data collection, mitigating the need for user-supplied initial data. It
incorporates user prompts into the coding process to reduce the risks of
undertraining and enhances the interaction among models throughout their
lifecycle to promote the reuse and augmentation of networks. Furthermore, the
foundational principles and algorithms in COOL's design and its compilation
system could provide valuable insights for future developments in programming
languages and neural network architectures.
Related papers
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Aligning Knowledge Graphs Provided by Humans and Generated from Neural Networks in Specific Tasks [5.791414814676125]
This paper develops an innovative method that enables neural networks to generate and utilize knowledge graphs.
Our approach eschews traditional dependencies on or word embedding models, mining concepts from neural networks and directly aligning them with human knowledge.
Experiments show that our method consistently captures network-generated concepts that align closely with human knowledge and can even uncover new, useful concepts not previously identified by humans.
arXiv Detail & Related papers (2024-04-23T20:33:17Z) - Reasoning Algorithmically in Graph Neural Networks [1.8130068086063336]
We aim to integrate the structured and rule-based reasoning of algorithms with adaptive learning capabilities of neural networks.
This dissertation provides theoretical and practical contributions to this area of research.
arXiv Detail & Related papers (2024-02-21T12:16:51Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI (NeSy) holds promise to ensure the safe deployment of AI systems.
Existing pipelines that train the neural and symbolic components sequentially require extensive labelling.
New architecture, NeSyGPT, fine-tunes a vision-language foundation model to extract symbolic features from raw data.
arXiv Detail & Related papers (2024-02-02T20:33:14Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
Symbolic rule learners generate interpretable solutions, however they require the input to be encoded symbolically.
Neuro-symbolic approaches overcome this issue by mapping raw data to latent symbolic concepts using a neural network.
We introduce NeuralFastLAS, a scalable and fast end-to-end approach that trains a neural network jointly with a symbolic learner.
arXiv Detail & Related papers (2023-10-08T12:33:42Z) - Enhancing Network Management Using Code Generated by Large Language
Models [15.557254786007325]
We introduce a novel approach to facilitate a natural-language-based network management experience, utilizing large language models (LLMs) to generate task-specific code from natural language queries.
This method tackles the challenges of explainability, scalability, and privacy by allowing network operators to inspect the generated code.
We design and evaluate a prototype system using benchmark applications, showcasing high accuracy, cost-effectiveness, and the potential for further enhancements.
arXiv Detail & Related papers (2023-08-11T17:49:15Z) - Introduction to Machine Learning for the Sciences [0.0]
The notes start with an exposition of machine learning methods without neural networks, such as principle component analysis, t-SNE, and linear regression.
We continue with an introduction to both basic and advanced neural network structures such as conventional neural networks, (variational) autoencoders, generative adversarial networks, restricted Boltzmann machines, and recurrent neural networks.
arXiv Detail & Related papers (2021-02-08T16:25:46Z) - Draw your Neural Networks [0.0]
We present Sketch framework, that uses this GUI-based approach to design and modify the neural networks.
The system provides popular layers and operations out-of-the-box and could import any supported pre-trained model.
arXiv Detail & Related papers (2020-12-12T09:44:03Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
Spiking Neural Networks are cognitive algorithms mimicking neuron and synapse operational principles.
We present the state of the art of hardware implementations of spiking neural networks.
We discuss the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level.
arXiv Detail & Related papers (2020-05-04T13:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.