Rotation-Invariant Random Features Provide a Strong Baseline for Machine
Learning on 3D Point Clouds
- URL: http://arxiv.org/abs/2308.06271v1
- Date: Thu, 27 Jul 2023 20:18:11 GMT
- Title: Rotation-Invariant Random Features Provide a Strong Baseline for Machine
Learning on 3D Point Clouds
- Authors: Owen Melia, Eric Jonas, and Rebecca Willett
- Abstract summary: We propose a simple and general-purpose method for learning rotation-invariant functions of three-dimensional point cloud data.
We show through experiments that our method matches or outperforms the performance of general-purpose rotation-invariant neural networks.
- Score: 10.166033101890227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rotational invariance is a popular inductive bias used by many fields in
machine learning, such as computer vision and machine learning for quantum
chemistry. Rotation-invariant machine learning methods set the state of the art
for many tasks, including molecular property prediction and 3D shape
classification. These methods generally either rely on task-specific
rotation-invariant features, or they use general-purpose deep neural networks
which are complicated to design and train. However, it is unclear whether the
success of these methods is primarily due to the rotation invariance or the
deep neural networks. To address this question, we suggest a simple and
general-purpose method for learning rotation-invariant functions of
three-dimensional point cloud data using a random features approach.
Specifically, we extend the random features method of Rahimi & Recht 2007 by
deriving a version that is invariant to three-dimensional rotations and showing
that it is fast to evaluate on point cloud data. We show through experiments
that our method matches or outperforms the performance of general-purpose
rotation-invariant neural networks on standard molecular property prediction
benchmark datasets QM7 and QM9. We also show that our method is general-purpose
and provides a rotation-invariant baseline on the ModelNet40 shape
classification task. Finally, we show that our method has an order of magnitude
smaller prediction latency than competing kernel methods.
Related papers
- PARE-Net: Position-Aware Rotation-Equivariant Networks for Robust Point Cloud Registration [8.668461141536383]
Learning rotation-invariant distinctive features is a fundamental requirement for point cloud registration.
Existing methods often use rotation-sensitive networks to extract features, while employing rotation augmentation to learn an approximate invariant mapping rudely.
We propose a novel position-aware rotation-equivariant network, for efficient, light-weighted, and robust registration.
arXiv Detail & Related papers (2024-07-14T10:26:38Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
Normal estimation for 3D point clouds is a fundamental task in 3D geometry processing.
We introduce a new paradigm for learning neural gradient functions, which encourages the neural network to fit the input point clouds.
Our excellent results on widely used benchmarks demonstrate that our method can learn more accurate normals for both unoriented and oriented normal estimation tasks.
arXiv Detail & Related papers (2023-11-01T09:25:29Z) - A Simple Strategy to Provable Invariance via Orbit Mapping [14.127786615513978]
We propose a method to make network architectures provably invariant with respect to group actions.
In a nutshell, we intend to 'undo' any possible transformation before feeding the data into the actual network.
arXiv Detail & Related papers (2022-09-24T03:40:42Z) - RIConv++: Effective Rotation Invariant Convolutions for 3D Point Clouds
Deep Learning [32.18566879365623]
3D point clouds deep learning is a promising field of research that allows a neural network to learn features of point clouds directly.
We propose a simple yet effective convolution operator that enhances feature distinction by designing powerful rotation invariant features from the local regions.
Our network architecture can capture both local and global context by simply tuning the neighborhood size in each convolution layer.
arXiv Detail & Related papers (2022-02-26T08:32:44Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks.
We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems.
We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-02-08T16:16:11Z) - Vector Neurons: A General Framework for SO(3)-Equivariant Networks [32.81671803104126]
In this paper, we introduce a general framework built on top of what we call Vector Neuron representations.
Our vector neurons enable a simple mapping of SO(3) actions to latent spaces.
We also show for the first time a rotation equivariant reconstruction network.
arXiv Detail & Related papers (2021-04-25T18:48:15Z) - PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features [91.2054994193218]
We propose a point-set learning framework PRIN, focusing on rotation invariant feature extraction in point clouds analysis.
In addition, we extend PRIN to a sparse version called SPRIN, which directly operates on sparse point clouds.
Results show that, on the dataset with randomly rotated point clouds, SPRIN demonstrates better performance than state-of-the-art methods without any data augmentation.
arXiv Detail & Related papers (2021-02-24T06:44:09Z) - Adjoint Rigid Transform Network: Task-conditioned Alignment of 3D Shapes [86.2129580231191]
Adjoint Rigid Transform (ART) Network is a neural module which can be integrated with a variety of 3D networks.
ART learns to rotate input shapes to a learned canonical orientation, which is crucial for a lot of tasks.
We will release our code and pre-trained models for further research.
arXiv Detail & Related papers (2021-02-01T20:58:45Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Learning to Orient Surfaces by Self-supervised Spherical CNNs [15.554429755106332]
Defining and reliably finding a canonical orientation for 3D surfaces is key to many Computer Vision and Robotics applications.
We show the feasibility of learning a robust canonical orientation for surfaces represented as point clouds.
Our method learns such feature maps from raw data by a self-supervised training procedure and robustly selects a rotation to transform the input point cloud into a learned canonical orientation.
arXiv Detail & Related papers (2020-11-06T11:43:57Z) - A Rotation-Invariant Framework for Deep Point Cloud Analysis [132.91915346157018]
We introduce a new low-level purely rotation-invariant representation to replace common 3D Cartesian coordinates as the network inputs.
Also, we present a network architecture to embed these representations into features, encoding local relations between points and their neighbors, and the global shape structure.
We evaluate our method on multiple point cloud analysis tasks, including shape classification, part segmentation, and shape retrieval.
arXiv Detail & Related papers (2020-03-16T14:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.