論文の概要: Deep Learning-Based Open Source Toolkit for Eosinophil Detection in
Pediatric Eosinophilic Esophagitis
- arxiv url: http://arxiv.org/abs/2308.06333v1
- Date: Fri, 11 Aug 2023 18:18:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 18:03:59.882434
- Title: Deep Learning-Based Open Source Toolkit for Eosinophil Detection in
Pediatric Eosinophilic Esophagitis
- Title(参考訳): 小児好酸球性食道炎の好酸球検出のための深層学習型オープンソースツールキット
- Authors: Juming Xiong, Yilin Liu, Ruining Deng, Regina N Tyree, Hernan Correa,
Girish Hiremath, Yaohong Wang, and Yuankai Huo
- Abstract要約: 好酸球性食道炎(英: Eosinophilic Esophagitis, EoE)は、慢性・免疫・抗原性食道疾患である。
我々はオープンソースのツールキットOpen-EoEを開発し、Docker経由で1行のコマンドを使用して、エンドツーエンドのスライドイメージ(WSI)レベル(Eos)を検出する。
- 参考スコア(独自算出の注目度): 6.004809895258927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Eosinophilic Esophagitis (EoE) is a chronic, immune/antigen-mediated
esophageal disease, characterized by symptoms related to esophageal dysfunction
and histological evidence of eosinophil-dominant inflammation. Owing to the
intricate microscopic representation of EoE in imaging, current methodologies
which depend on manual identification are not only labor-intensive but also
prone to inaccuracies. In this study, we develop an open-source toolkit, named
Open-EoE, to perform end-to-end whole slide image (WSI) level eosinophil (Eos)
detection using one line of command via Docker. Specifically, the toolkit
supports three state-of-the-art deep learning-based object detection models.
Furthermore, Open-EoE further optimizes the performance by implementing an
ensemble learning strategy, and enhancing the precision and reliability of our
results. The experimental results demonstrated that the Open-EoE toolkit can
efficiently detect Eos on a testing set with 289 WSIs. At the widely accepted
threshold of >= 15 Eos per high power field (HPF) for diagnosing EoE, the
Open-EoE achieved an accuracy of 91%, showing decent consistency with
pathologist evaluations. This suggests a promising avenue for integrating
machine learning methodologies into the diagnostic process for EoE. The docker
and source code has been made publicly available at
https://github.com/hrlblab/Open-EoE.
- Abstract(参考訳): 好酸球性食道炎(英: Eosinophilic Esophagitis, EoE)は、慢性・免疫・抗原性食道疾患であり、食道機能障害に関連する症状と好酸球優性炎症の組織学的証拠を特徴とする。
画像におけるEoEの複雑な微視的表現のため、手動識別に依存する現在の手法は、労働集約的なだけでなく、不正確性も伴う。
本研究では,docker経由で1行のコマンドを使って,全スライド画像(wsi)レベルeos(eos)を検出するためのオープンソースツールキットopen-eoeを開発した。
具体的には、3つの最先端のディープラーニングベースのオブジェクト検出モデルをサポートする。
さらにopen-eoeは,アンサンブル学習戦略を実装し,結果の正確性と信頼性を高めることにより,さらにパフォーマンスを最適化する。
実験の結果, open-eoe toolkit は 289 wsis のテストセット上で eos を効率的に検出できることがわかった。
eoeを診断するための高出力場(hpf)あたり15 eosの閾値が広く認められ、オープンeoeは91%の精度を達成し、病理組織学的評価と良好に一致した。
これは、EoEの診断プロセスに機械学習方法論を統合するための有望な道のりを示唆している。
dockerとソースコードはhttps://github.com/hrlblab/Open-EoEで公開されている。
関連論文リスト
- Uncertainty Quantification for Eosinophil Segmentation [16.70916787417709]
好酸球性食道炎 (EoE) は有病率が高くなるアレルギー性疾患である。
EoEを診断するためには、病理学者は1つの高出力場(400X倍率)に15以上の好酸球を見つける必要がある。
深部画像分割を用いた好酸球定量化のためのAdorno et al のアプローチの改善を提案する。
論文 参考訳(メタデータ) (2023-09-28T15:49:01Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Eosinophils Instance Object Segmentation on Whole Slide Imaging Using
Multi-label Circle Representation [6.263438295365185]
好酸球性食道炎 (EoE) は食道炎を特徴とする慢性再発性疾患である。
EoEの診断は一般的に高出力場当たりの好酸球の閾値(15~20)で行われる。
論文 参考訳(メタデータ) (2023-08-17T13:27:01Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
タスク指向型自己教師型学習手法を提案する。
大きなカーネルを持つ特定の2つの分岐畳み込みニューラルネットワークを特徴抽出器として設計する。
効果的に設計され、訓練された特徴抽出器は、より優れた特徴表現を脳波から抽出できることが示されている。
論文 参考訳(メタデータ) (2022-07-04T13:15:08Z) - High Frequency EEG Artifact Detection with Uncertainty via Early Exit
Paradigm [70.50499513259322]
現在のアーティファクト検出パイプラインはリソース不足であり、手作りの機能に大きく依存している。
高周波脳波アーチファクト検出のためのディープラーニングフレームワークであるE4Gを提案する。
われわれのフレームワークは初期の出口パラダイムを利用して、不確実性を捉えることのできるモデルの暗黙のアンサンブルを構築している。
論文 参考訳(メタデータ) (2021-07-21T07:05:42Z) - PECNet: A Deep Multi-Label Segmentation Network for Eosinophilic
Esophagitis Biopsy Diagnostics [0.0]
好酸球性食道炎 (EoE) は好酸球増加を伴う食道のアレルギー性炎症性疾患である。
ここでは,機械学習を用いてeoeを識別,定量化し,診断することを目的とした。
PECNet は無傷好酸球を平均絶対誤差 0.611 で定量し、EoE 病活性を98.5% の精度で分類することができた。
論文 参考訳(メタデータ) (2021-03-02T20:37:57Z) - Advancing Eosinophilic Esophagitis Diagnosis and Phenotype Assessment
with Deep Learning Computer Vision [0.7915536524413249]
好酸球性食道炎(英: eosinophilic esophagitis, eoe)は炎症性食道疾患である。
深部画像分割を用いた好酸球の自動定量手法を提案する。
U-Netモデルと後処理システムを適用して、EoEを診断し、疾患の重症度と進行を記述できる好酸球に基づく統計データを生成する。
論文 参考訳(メタデータ) (2021-01-13T20:01:48Z) - Machine learning approach for biopsy-based identification of
eosinophilic esophagitis reveals importance of global features [0.0]
好酸球性食道炎(英: eosinophilic esophagitis, eoe)は食道粘膜に好酸球が蓄積するアレルギー疾患である。
このプロセスの自動化における大きな課題の1つは、生検の規模に対して小さい特徴を検出することである。
我々は、食道生検を85%の精度で分類できるディープ畳み込みニューラルネットワーク(DCNN)に基づくプラットフォームを開発しました。
論文 参考訳(メタデータ) (2021-01-13T10:38:46Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
教師付き学習パラダイムは、しばしば利用可能なラベル付きデータの量によって制限される。
この現象は脳波(EEG)などの臨床関連データに特に問題となる。
ラベルのないデータから情報を抽出することで、ディープニューラルネットワークとの競合性能に到達することができるかもしれない。
論文 参考訳(メタデータ) (2020-07-31T14:34:47Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。